CETIFICATION

SDG No:

JC28248

Humacao, PR

Laboratory:

Accutest, New Jersey

Site:

BMS, Building 5 Area, PR

Matrix:

Groundwater

SUMMARY:

Groundwater samples (Table 1) were collected on the BMSMC facility – Building 5 Area. The BMSMC facility is located in Humacao, PR. Samples were taken September 19-21, 2016 and were analyzed in Accutest Laboratory of Dayton, New Jersey for the ABN TCL Special List (1,4-Dioxane and Naphthalene were analyzed following the SIM technique); TCL pesticides list; and for low molecular weight alcohols (LMWA) the results were reported under SDG No.: JC28248. Results were validated using the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE DESCRIPTION	MATRIX	ANALYSIS PERFORMED
JC28248-1	D-1R	Groundwater	ABN TCL special list; 1,-4-dioxane and Naphthalene (SIM); Pesticides TCL list; LMWA
JC28248-2	8-42D	Groundwater	ABN TCL special list; 1,-4-dioxane and Naphthalene (SIM); Pesticides TCL list; LMWA
JC28248-3	5-428	Groundwater	ABN TCL special list; 1,-4-dioxane and Naphthalene (SIM); Pesticides TCL list; LMWA
JC28248-4	5-42D	Groundwater	ABN TCL special list; 1,-4-dioxane and Naphthalene (SIM); Pesticides TCL list; LMWA
JC28248-5	5-43\$	Groundwater	ABN TCL special list; 1,-4-dioxane and Naphthalene (SIM); Pesticides TCL list; LMWA
JC28248-6	MW-20D	Groundwater	ABN TCL special list; 1,-4-dioxane and Naphthalene (SIM); Pesticides TCL list; LMWA
JC28248-7	MW-20S	Groundwater	ABN TCL special list; 1,-4-dioxane and Naphthalene (SIM); Pesticides TCL list; LMWA

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

October 15 2016

Pafael Infante Méndatz LIC # 1888

1600836

Report of Analysis

Page 1 of 3

Client Sample ID: D-1R

Lab Sample ID: JC28248-1

Matrix:

AQ - Ground Water

Method:

SW846 8270D SW846 3510C

Date Received: 09/23/16

Date Sampled: 09/19/16

Q

Percent Solids: n/a

Project:

Run #1

Run #2

BMSMC, Building 5 Area, PR

File ID DF

Analyzed By Prep Date Prep Batch Analytical Batch P107796.D 1 09/27/16 RL 09/24/16 OP97267 EP4778 P107881.D 50 09/30/16 RL09/24/16 OP97267 EP4782

Initial Volume Final Volume Run #1 960 ml $1.0 \, \mathrm{ml}$ Run #2 960 ml $1.0 \, \mathrm{ml}$

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.2	0.85	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.2	0.93	ug/I
120-83-2	2,4-Dichlorophenol	ND	2.1	1.3	ug/I
105-67-9	2,4-Dimethylphenol	ND	5.2	2.5	ug/I
51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.2	1.4	ug/l
95-48-7	2-Methylphenol	ND	2.1	0.93	ug/I
	3&4-Methylphenol	ND	2.1	0.92	ug/I
88-75-5	2-Nitrophenol	ND	5.2	1.0	ug/l
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.2	1.4	ug/l
108-95-2	Phenol	ND	2.1	0.41	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.2	1.5	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.2	1.4	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.2	0.96	ug/l
83-32-9	Acenaphthene	ND	1.0	0.20	ug/l
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l
98-86-2	Acetophenone	ND	2.1	0.22	ug/l
120-12-7	Anthracene	0.69	1.0	0.22	ug/l
1912-24-9	Atrazine	ND	2.1	0.47	ug/l
100-52-7	Benzaldehyde	ND	5.2	0.30	ug/l
56-55-3	Benzo(a)anthracene	ND	1.0	0.21	ug/l
50-32-8	Benzo(a)pyrene	ND	1.0	0.22	ug/l
205-99-2	Benzo(b) fluoranthene	ND	1.0	0.21	ug/I
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.36	ug/l
207-08-9	Benzo(k) fluoranthene	ND	1.0	0.21	ug/I
101-55-3	4-Bromophenyl phenyl ether	ND	2.1	0.42	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.1	0.48	ug/l
92-52-4	1,1'-Biphenyl	ND	1.0	0.22	ug/l
91-58-7	2-Chloronaplithalene	ND	2.1	0.25	ug/l
106-47-8	4-Chloroaniline	ND	5.2	0.35	ug/l
86-74-8	Carbazole	ND	1.0	0.24	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: DIR Lab Sample ID:

JC28248-1

Matrix: Method: Project:

AQ Ground Water SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 09/19/16 Date Received: 09/23/16

Q

Percent Solids: n/a

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
105-60-2	Caprolactam	ND	2.1	0.68	ug/l
218-01-9	Chrysene	ND	1.0	0.18	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	2.1	0.29	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	2.1	0.26	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.1	0.42	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.1	0.38	ug/l
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.58	ug/I
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.50	ug/l
91-94-1	3,3'-Dichlorobenzidine	ND	2.1	0.53	ug/I
123-91-1	1,4-Dioxane	1660 a	52	34	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.34	ug/l
132-64-9	Dibenzofuran	ND	5.2	0.23	ug/l
84-74-2	Di-n-butyl phthalate	ND	2.1	0.52	ug/l
117-84-0	Di-n-octyl phthalate	ND	2.1	0.24	ug/l
84-66-2	Diethyl phthalate	ND	2.1	0.27	ug/l
131-11-3	Dimethyl phthalate	ND	2.1	0.23	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	1.7	ug/l
206-44-0	Fluoranthene	ND	1.0	0.18	ug/l
86-73-7	Fluorene	ND	1.0	0.18	ug/l
118-74-1	Hexachlorobenzene	ND	1.0	0.34	ug/l
87-68-3	Hexachlorobutadiene	ND	1.0	0.51	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	10	2.9	ug/l
67-72-1	Hexachloroethane	ND	2.1	0.41	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.35	ug/l
78-59-1	Isophorone	ND	2.1	0.29	ug/l
90-12-0	1-Methylnaphthalene	ND	1.0	0.27	ug/I
91-57-6	2-Methylnaphthalene	ND	1.0	0.22	ug/l
88-74-4	2-Nitroaniline	ND	5.2	0.29	ug/l
99-09-2	3-Nitroaniline	ND	5.2	0.40	ug/l
100-01-6	4-Nitroaniline	ND	5.2	0.46	ug/l
98-95-3	Nitrobenzene	ND	2.1	0.67	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	2.1	0.50	ug/I
86-30-6	N-Nitrosodiphenylamine	0.53	5.2	0.23	ug/l
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l
129-00-0	Pyrene	ND	1.0	0.23	ug/l
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.1	0.39	ug/I
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its
367-12-4	2-Fluorophenol	36%	0% в	14-8	8%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value.

B = Indicates analyte found in associated method blank

Ву

Page 1 of 1

Client Sample ID: D-1R Lab Sample ID:

JC28248-1 AO - Ground Water Date Sampled:

09/19/16

Matrix: Method:

SW846 8270D BY SIM SW846 3510C

Date Received: 09/23/16

Project:

BMSMC, Building 5 Area, PR

Percent Solids: n/a

0

Run #1

File ID DF 3P55894.D 1

Analyzed 09/26/16

Prep Date AD 09/24/16

MDL

Prep Batch OP97267A

Analytical Batch E3P2570

Run #2

Initial Volume Final Volume Run #1 960 ml 1.0 ml

Run #2

CAS No.

91-20-3

4165-60-0

321-60-8

1718-51-0

Result

RL

Run# 2

Units

Naphthalene

Compound

ND

0.10

0.031

Limits

ug/l

CAS No. Surrogate Recoveries

Terphenyl-d14

Nitrobenzene-d5 2-Fluorobiphenyl

58% 44% 37%

Run#1

24-125% 19-127% 10-119%

ND = Not detected

RL = Reporting Limit E = Indicates value exceeds calibration range

MDL = Method Detection Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

XPL

09/27/16

Prep Date

n/a

Page 1 of 1

Client Sample ID: D-1R Lab Sample ID:

JC28248-1

GH106690.D

Date Sampled: 09/19/16

Matrix: Mcthod: AQ - Ground Water SW846-8015C (DAI)

1

Date Received: 09/23/16

Project:

BMSMC, Building 5 Area, PR

Percent Solids: n/a

Q

1				
lR	п	n	뷰	1

File ID DF Analyzed

Prep Batch Analytical Batch n/a GGH5504

Run #2

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units
64-17-5 78-83-1 67-63-0 71-23-8 71-36-3 78-92-2 67-56-1	Ethanol Isobutyi Alcohol Isopropyl Alcohol n-Propyl Alcohol n-Butyl Alcohol sec-Butyl Alcohol Methanol	ND ND ND ND ND ND ND	200 100 100 100 100 100 200	55 36 68 43 87 66 71	ug/l ug/l ug/l ug/l ug/l ug/l
CAS No.	Surrogate Recoveries Hexanol	Run# 1 70%	Run# 2	Limi	

Report of Analysis

Page 1 of 1

Client Sample ID: D-IR

Lab Sample ID: JC28248-1

Matrix: Method:

Project:

AQ - Ground Water

SW846 8081B SW846 3510C BMSMC, Building 5 Area, PR Date Sampled: 09/19/16 Date Received: 09/23/16

Q

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1 a	1G128042.D	1	10/06/16	DS	10/06/16	OP97553	G1G4105
Run #2 b	1G127937.D	I	10/05/16	KD	09/26/16	OP97273	G1G4103

	Initial Volume	Final Volume		
Run #1	970 ml	10.0 ml		
Run #2	$1000 \mathrm{\ ml}$	10.0 ml		

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.010	0.0062	ug/l
319-84-6	alpha-BHC	ND	0.010	0.0062	ug/l
319-85-7	beta-BHC	ND	0.010	0.0059	ug/I
319-86-8	delta-BHC	ND	0.010	0.0047	ug/I
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0029	ug/l
5103-71-9	alpha-Chlordane	ND	0.010	0.0048	ug/l
5103-74-2	gamma-Chlordane	ND	0.010	0.0047	ug/l
60-57-1	Dieldrin	ND	0.010	0.0037	ug/I
72-54-8	4,4'-DDD	ND	0.010	0.0039	ug/l
72-55-9	4,4'-DDE	ND	0.010	0.0064	ug/l
50-29-3	4,4'-DDT	ND	0.010	0.0051	ug/I
72-20-8	Endrin	ND	0.010	0.0052	ug/l
1031-07-8	Endosulfan sulfate	ND	0.010	0.0054	ug/l
7421-93-4	Endrin aldehyde	ND	0.010	0.0053	ug/l
53494-70-5	Endrin ketone	ND	0.010	0.0052	ug/l
959-98-8	Endosulfan-I	ND	0.010	0.0051	ug/l
33213-65-9	Endosulfan-H	ND	0.010	0.0044	ug/I
76-44-8	Heptachlor	ND	0.010	0.0039	ug/l
1024-57-3	Heptachlor epoxide	ND	0.010	0.0067	ug/I
72-43-5	Methoxychlor	ND	0.021	0.0059	ug/l
8001-35-2	Toxaphene	ND	0.26	0.19	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
877-09-8	Tetrachloro-m-xylene	75%	84%	26-13	2%
877-09-8	Tetrachloro-m-xylene	75%	71%	26-13	2%
2051-24-3	Decachlorobiphenyl	53%	46%	10-11	8%
2051-24-3	Decachlorobiphenyl	53%	34%	10-11	8%

(a) Re-extracted due to BS outside in house QC limits. Originally prep date was within holding time.

(b) Confirmation run.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 3

Client Sample ID: S-42D Lab Sample ID:

JC28248-2

Matrix: Method: AQ Ground Water

SW846 8270D SW846 3510C

Date Sampled: 09/20/16 Date Received: 09/23/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	6P30164.D	1	09/28/16	AC	09/26/16	OP97271	E6P1407
Run #2	6P30169.D	200	09/28/16	AC	09/26/16	OP97271	E6P1407

	Initial Volume	Final Volume		
Run #1	1000 ml	1.0 ml		
Run #2	1000 ml	1.0 ml		

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	.Q
95-57-8	2-Chlorophenol	ND	5.0	0.82	ug/l	
59-50-7	4-Chloro-3 methyl phenol	ND	5.0	0.89	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/I	
105-67-9	2,4-Dimethylphenol	ND	5.0	2.4	ug/l	
51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	5.0	1.3	ug/l	
95-48-7	2-Methylphenol	ND	2.0	0.89	ug/I	
	3&4-Methylphenol	ND	2.0	0.88	ug/I	
88-75-5	2-Nitrophenol	ND	5.0	0.96	ug/l	
100-02-7	4-Nitrophenol	ND	10	1.2	ug/I	
87-86-5	Pentachlorophenol	ND	4.0	1.4	ug/l	
108-95-2	Phenol	ND	2.0	0.39	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.0	1.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.3	ug/I	
88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.92	ug/l	
83-32-9	Acenaphthene	ND	1.0	0.19	ug/I	
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l	
98-86-2	Acetophenone	ND	2.0	0.21	ug/l	
120-12-7	Anthracene	ND	1.0	0.21	ug/l	
1912-24-9	Afrazine	ND	2.0	0.45	ug/l	
100-52-7	Benzaldehyde	ND	5.0	0.29	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.20	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.21	ug/I	
205-99-2	Benzo(b) fluoranthene	ND	1.0	0.21	ug/I	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.40	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.0	0.46	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.21	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l	
106-47-8	4-Chloroaniline	ND	5.0	0.34	ug/l	
86-74-8	Carbazole	ND	1.0	0.23	ug/I	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: S-42D Lab Sample ID:

Matrix:

Method:

Project:

JC28248-2

AQ - Ground Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 09/20/16 Date Received: 09/23/16

Percent Solids: n/a

ABN TCL Special List

ABN TCL Special List							
CAS No.	Compound	Result	RL	MDL	Units	Q	
105-60-2	Caprolactam	ND	2.0	0.65	ug/l		
218-01-9	Chrysene	ND	1.0	0.18	ug/l		
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l		
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l		
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.40	ug/l		
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l		
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.55	ug/I		
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.48	ug/l		
91-94-I	3,3'-Dichlorobenzidine	ND	2.0	0.51	ug/l		
123-91-1	1,4 Dioxane	3130 a	200	130	ug/l		
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.33	ug/l		
132-64-9	Dibenzofuran	ND	5.0	0.22	ug/I		
84-74-2	Di-n-butyl phthalate	ND	2.0	0.50	ug/l		
117-84-0	Di-n-octyl phthalate	ND	2.0	0.23	ug/l		
84-66-2	Diethyl phthalate	ND	2.0	0.26	ug/I		
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/I		
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l		
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l		
86-73-7	Fluorene	ND	1.0	0.17	ug/l		
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l		
87-68-3	Hexachlorobutadiene	ND	1.0	0.49	ug/I		
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l		
67-72-1	Hexachloroethane	ND	2.0	0.39	ug/I		
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.33	ug/l		
78-59-1	Isophorone	ND	2.0	0.28	ug/I		
90-12-0	1-Methylnaphthalene	ND	1.0	0.26	ug/I		
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l		
88-74-4	2-Nitroaniline	ND	5.0	0.28	ug/l		
99-09-2	3-Nitroaniline	ND	5.0	0.39	ug/l		
100-01-6	4-Nitroaniline	ND	5.0	0.44	ug/l		
98-95-3	Nitrobenzene	ND	2.0	0.64	ug/l		
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.48	ug/l		
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.22	ug/l		
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l		
129-00-0	Pyrene	ND	1.0	0.22	ug/l		
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.37	ug/l		
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	ts		
367-12-4	2-Fluorophenol	49%	0% h	14-88	1%		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value.

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: S-42D Lab Sample ID:

Matrix:

Method:

Project:

JC28248-2

AQ - Ground Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 09/20/16

Date Received: 09/23/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-62-2	Phenol-d5	32%	0% b	10-110%
118-79-6	2,4,6-Tribromophenol	87%	0% b	39-149%
4165-60-0	Nitrobenzene-d5	78%	0% b	32-128%
321-60-8	2-Fluorobiphenyl	80%	53%	35-119%
1718-51-0	Terphenyl-d14	69%	54%	10-126%

(a) Result is from Run# 2

(b) Outside control limits due to dilution.

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

SG

Prep Date

09/26/16

Page 1 of 1

Client Sample ID: Lab Sample ID:

File ID

3P55954.D

JC28248-2

AQ - Ground Water SW846 8270D BY SIM SW846 3510C Date Sampled: Date Received:

09/20/16 09/23/16

Percent Solids: 11/a

Method: Project:

Matrix:

BMSMC, Building 5 Area, PR

DF

1

Prep Batch Analytical Batch

OP97271A E3P2573

Run #1 Run #2

> Initial Volume Final Volume 1000 ml 1.0 ml

Run #1 Run #2

CAS No. Compound Result RL MDL Units 0

Analyzed

09/28/16

91-20-3 Naphthalene ND 0.100.029ug/l

CAS No. Surrogate Recoveries Run#1 Run# 2 Limits

4165-60-0 Nitrobenzene-d5 . 57% 24-125% 321-60-8 2-Fluorobiphenyl 48% 19-127% 1718-51-0 Terphenyl-d14 45% 10-119%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: S-42D

Method:

Project:

Lab Sample ID: JC28248-2 Matrix:

AQ - Ground Water SW846-8015C (DAI)

BMSMC, Building 5 Area, PR

Date Sampled: 09/20/16 Date Received: 09/23/16

Percent Solids: n/a

Q

	Analyzed By 09/27/16 XPL		Prep Batch n/a	Analytical Batch GGH5504
--	-----------------------------	--	-------------------	-----------------------------

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units
64-17-5 78-83-1 67-63-0 71-23-8 71-36-3 78-92-2 67-56-1	Ethanol Isobutyl Alcohol Isopropyl Alcohol n-Propyl Alcohol n-Butyl Alcohol sec-Butyl Alcohol Methanol	ND ND ND ND ND ND	200 100 100 100 100 100 100 200	55 36 68 43 87 66 71	ug/l ug/l ug/l ug/l ug/l ug/l
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	ts
111-27-3	Hexanol	80%		56-14	15%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: S-42D Lab Sample ID:

JC28248-2

Matrix:

AQ - Ground Water

Method: Project:

SW846 8081B SW846 3510C

DF

1

File ID

BMSMC, Building 5 Area, PR

Date Sampled: 09/20/16

Date Received: 09/23/16

Percent Solids: n/a

Run #1 a Run #2

1G127938.D

10/05/16

Analyzed

By KD Prep Date 09/26/16

Prep Batch OP97273

Q

Analytical Batch G1G4103

Initial Volume Final Volume 1000 ml

Run #1 Run #2 $10.0 \, \mathrm{ml}$

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin ^b	ND	0.010	0.0060	ug/l
319-84-6	alpha-BHC	ND	0.010	0.0060	ug/l
319-85-7	beta-BHC	ND	0.010	0.0057	ug/I
319-86-8	delta-BHC	ND	0.010	0.0046	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0028	ug/I
5103-71-9	alpha-Chlordane	ND	0.010	0.0046	ug/I
5103-74-2	gamma-Chlordane	ND	0.010	0.0046	ug/I
60-57-1	Dieldrin	ND	0.010	0.0036	ug/l
72-54-8	4,4'-DDD	ND	0.010	0.0038	ug/l
72-55-9	4,4'-DDE	ND	0.010	0.0062	ug/l
50-29-3	4,4'-DDT	ND	0.010	0.0050	ug/I
72-20-8	Endrin	ND	0.010	0.0050	ug/l
1031-07-8	Endosulfan sulfate	ND	0.010	0.0053	ug/l
7421-93-4	Endrin aldehyde	ND	0.010	0.0051	ug/l
53494-70-5	Endrin ketone	ND	0.010	0.0051	ug/l
959-98-8	Endosulfan-I	ND	0.010	0.0050	ug/I
33213-65-9	Endosulfan-II	ND	0.010	0.0043	ug/l
76-44-8	Heptachlor ^b	ND	0.010	0.0038	ug/l
1024-57-3	Heptachlor epoxide	ND	0.010	0.0065	ug/l
72-43-5	Methoxychlor	ND	0.020	0.0057	ug/I
8001-35-2	Toxaphene	ND	0.25	0.18	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	is
877-09-8	Tetrachloro-m-xylene	81%		26-13	2%
877-09-8	Tetrachloro-m-xylene	68%		26-13	2%
2051-24-3	Decachlorobiphenyl	43%		10-11	8%
2051-24-3	Decachlorobiphenyl	33%		10-H	8%

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

⁽a) There is no additional sample for re-extraction.

⁽b) This compound outside control limits biased low in the associated BS.

Report of Analysis

Page 1 of 3

Client Sample ID: S-42S

Lab Sample ID: JC28248-3

Matrix:

AQ - Ground Water

Method: Project:

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 09/20/16 Date Received: 09/23/16

Q

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	6P30233.D	1	09/29/16	AC	09/26/16	OP97271	E6P1409
Run #2	6P30267.D	100	09/30/16	AC	09/26/16	OP97271	E6P1410

	Initial Volume	
Run #1	990 ml	1.0 ml
Run #2	990 ml	1.0 ml

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.1	0.83	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.1	0.90	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l
105-67 - 9	2,4-Dimethylphenol	ND	5.1	2.5	ug/l
51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/I
534-52-1	4,6-Dinitro-o-cresol	ND	5.1	1.3	ug/I
95-48-7	2-Methylphenol	ND	2.0	0.90	ug/l
	3&4-Methylphenol	ND	2.0	0.89	ug/l
88-75-5	2-Nitrophenol	ND	5.1	0.97	ug/l
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.0	1.4	ug/l
108-95-2	Phenol	ND	2.0	0.40	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.1	1.5	ug/I
95-95-4	2,4,5-Trichlorophenol	ND	5.1	1.3	ug/I
88-06-2	2,4,6-Trichlorophenol	ND	5.1	0.93	ug/l
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l
98-86-2	Acetophenone	ND	2.0	0.21	ug/I
120-12-7	Anthracene	ND	1.0	0.21	ug/l
1912-24-9	Atrazine	ND	2.0	0.45	ug/I
100-52-7	Benzaldehyde	ND	5.1	0.29	ug/I
56-55-3	Benzo(a)anthracene	ND	1.0	0.21	ug/l
50-32-8	Benzo(a)pyrene	ND	1.0	0.22	ug/I
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.41	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.0	0.46	ug/l
92-52-4	1,1'-Biphenyl	ND	1.0	0.21	ug/l
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l
106-47-8	4-Chloroaniline	ND	5.1	0.34	ug/l
86-74-8	Carbazole	ND	1.0	0.23	ug/l
					QJ

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: S-42S

Lab Sample ID: JC28248-3
Matrix: AQ - Ground Water

Matrix: Method: Project:

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 09/20/16 Date Received: 09/23/16

Q

Percent Solids: n/a

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
105-60-2	Caprolactam	ND	2.0	0.66	ug/I
218-01-9	Chrysene	ND	1.0	0.18	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/I
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.41	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.56	ug/l
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.48	ug/l
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.51	ug/l
123-91-1	1,4-Dioxane	3680 a	100	66	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.33	ug/l
132-64-9	Dibenzofuran	ND	5.1	0.22	ug/I
84-74-2	Di-n-butyl phthalate	ND	2.0	0.50	ug/I
117-84-0	Di-n-octyl phthalate	ND	2.0	0.24	ug/l
84-66-2	Diethyl phthalate	ND	2.0	0.26	ug/I
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l
86-73-7	Fluorene	ND	1.0	0.17	ug/l
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l
87-68-3	Hexachlorobutadiene	ND	1.0	0.50	ug/I
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/I
67-72-1	Hexachloroethane	ND	2.0	0.39	ug/I
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.34	ug/l
78-59-1	Isophorone	ND	2.0	0.28	ug/l
90-12-0	1-Methylnaphthalene	ND	1.0	0.27	ug/I
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l
88-74-4	2-Nitroaniline	ND	5.1	0.28	ng/l
99-09-2	3-Nitroaniline	ND	5.1	0.39	ug/l
100-01-6	4-Nitroaniline	ND	5.1	0.44	ug/l
98-95-3	Nitrobenzene	ND	2.0	0.65	ug/I
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.49	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.1	0.22	ug/l
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l
129-00-0	Pyrene	ND	1.0	0.22	ug/l
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.37	ug/l
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limit	s

ND = Not detected

367-12-4

MDL = Method Detection Limit

44%

0% b

RL = Reporting Limit

E = Indicates value exceeds calibration range

2-Fluorophenol

J = Indicates an estimated value

14-88%

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: S-42S

Lab Sample ID:

JC28248-3

Matrix: Method: AQ - Ground Water

Project:

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 09/20/16

Date Received: 09/23/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
4165-62-2 118-79-6 4165-60-0 321-60-8 1718-51-0	Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	31% 89% 81% 82% 77%	0% b 0% b 0% b 0% b	10-110% 39-149% 32-128% 35-119% 10-126%

(a) Result is from Run# 2

(b) Outside control limits due to dilution.

Page 1 of 1

Client Sample ID: S-42S Lab Sample ID:

JC28248-3

Matrix:

AQ - Ground Water

Method: Project:

SW846 8270D BY SIM SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 09/20/16

Date Received: 09/23/16

Percent Solids; n/a

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	3P55953.D	1	09/28/16	SG	09/26/16	OP97271A	E3P2573

Run #2

Run #2

CAS No.

91-20-3

CAS No.

Initial Volume Run #1 990 ml

Compound

Naphthalene

Surrogate Recoveries

Final Volume $1.0 \, \mathrm{mI}$

Result

Run#1

RL

MDL

Units

Q

ND 0.10

0.030ug/I

Run#2 Limits

4165-60-0 Nitrobenzene-d5 57% 24-125% 321-60-8 2-Fluorobiphenyl 50% 19-127% 1718-51-0 Terphenyl-d14 46% 10-119%

Page 1 of 1

Client Sample ID: S-42S

Lab Sample ID:

JC28248-3

Matrix: Method: AQ - Ground Water SW846-8015C (DAI)

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 09/20/16

Q

Date Received: 09/23/16

Percent Solids: n/a

	ytical Batch 5504
--	----------------------

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units
64-17-5 78-83-1 67-63-0 71-23-8 71-36-3 78-92-2 67-56-1	Ethanol Isobutyl Alcohol Isopropyl Alcohol n-Propyl Alcohol n-Butyl Alcohol sec-Butyl Alcohol Methanol	ND ND ND ND ND ND ND	200 100 100 100 100 100 200	55 36 68 43 87 66 71	ug/l ug/l ug/l ug/l ug/l ug/l ug/l
CAS No.	Surrogate Recoveries Hexanol	Run# 1 84%	Run# 2	Limi 56-14	

MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Page 1 of 1

Client Sample ID: S-42S

Lab Sample ID:

JC28248-3

Matrix:

AQ - Ground Water

Method: Project:

SW846 8081B SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 09/20/16

Q

Date Received: 09/23/16

Percent Solids: n/a

1							
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	1G127939.D	1	10/05/16	KD	09/26/16	OP97273	G1G4103

Run #2

Initial Volume $1000 \, \mathrm{ml}$

Final Volume $10.0 \, \mathrm{ml}$

Run #1 Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin ^b	ND	0.010	0.0060	ug/l
319-84-6	alpha-BHC	ND	0.010	0.0060	ug/l
319-85-7	beta-BHC	ND	0.010	0.0057	ug/I
319-86-8	delta-BHC	ND	0.010	0.0046	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0028	ug/I
5103-71-9	alpha-Chlordane	ND	0.010	0.0046	ug/I
5103-74-2	gamma-Chlordane	ND	0.010	0.0046	ug/l
60-57-1	Dieldrin	ND	0.010	0.0036	ug/I
72-54-8	4,4'-DDD	ND	0.010	0.0038	ug/l
72-55-9	4,4'-DDE	ND	0.010	0.0062	ug/I
50-29-3	4,4'-DDT	ND	0.010	0.0050	ug/l
72-20-8	Endrin	ND	0.010	0.0050	ug/l
1031-07-8	Endosulfan sulfate	ND	0.010	0.0053	ug/I
7421-93-4	Endrin aldehyde	ND	0.010	0.0051	ug/l
53494-70-5	Endrin ketone	ND	0.010	0.0051	ug/l
959-98-8	Endosulfan-I	ND	0.010	0.0050	ug/l
33213-65-9	Endosulfan-II	ND	0.010	0.0043	ug/l
76-44-8	Heptachlor ^b	ND	0.010	0.0038	ug/l
1024-57-3	Heptachlor epoxide	ND	0.010	0.0065	ug/l
72-43-5	Methoxychlor	ND	0.020	0.0057	ug/l
8001-35-2	Toxaphene	ND	0.25	0.18	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
877-09-8	Tetrachloro-m-xylene	102%		26-13	32%
877-09-8	Tetrachloro-m-xylene	86%		26-13	12%
2051-24-3	Decachlorobiphenyl	54%		10-11	.8%
2051-24-3	Decachlorobiphenyl	44%		10-11	8%
	-				

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value.

B = Indicates analyte found in associated method blank

⁽a) There is no additional sample for re-extraction.

⁽b) This compound outside control limits biased low in the associated BS.

Report of Analysis

Page 1 of 3

Client Sample ID: S-43D Lab Sample ID:

JC28248-4

Matrix:

AQ - Ground Water

Method: Project:

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 09/20/16 Date Received: 09/23/16

Q

Percent Solids: n/a

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	6P30234.D	1	09/29/16	AC	09/26/16	OP97271	E6P1409
Run #2	6P30268.D	100	09/30/16	ΛC	09/26/16	OP97271	E6P1410

	Initial Volume	Final Volume
Run #1	1000 ml	1.0 ml
Run #2	1000 ml	1.0 ml

ABN TCL Special List

95-57-8 2-Chlorophenol ND 5.0 0.82 ug/l 59-50-7 4-Chloro-3-methyl phenol ND 5.0 0.89 ug/l 120-83-2 2,4-Dichlorophenol ND 5.0 2.4 ug/l 105-67-9 2,4-Dimethylphenol ND 5.0 2.4 ug/l 51-28-5 2,4-Dimitrophenol ND 5.0 1.3 ug/l 534-52-1 4,6-Dinitro-o-cresol ND 5.0 1.3 ug/l 95-48-7 2-Methylphenol ND 2.0 0.89 ug/l 95-48-7 2-Methylphenol ND 2.0 0.89 ug/l 88-75-5 2-Nitrophenol ND 5.0 0.96 ug/l 100-02-7 4-Nitrophenol ND 10 1.2 ug/l 88-78-5 Pentachlorophenol ND 4.0 1.4 ug/l 100-02-7 4-Nitrophenol ND 5.0 0.39 ug/l 88-95-2 Phenol ND <	CAS No.	Compound	Result	RL	MDL	Units
120-83-2 2,4-Dichlorophenol ND 2.0 1.3 ug/l 105-67-9 2,4-Dimethylphenol ND 5.0 2.4 ug/l 51-28-5 2,4-Dinitrophenol ND 10 1.6 ug/l 534-52-1 4,6-Dinitro-o-cresol ND 5.0 1.3 ug/l 95-48-7 2-Methylphenol ND 2.0 0.89 ug/l 3&4-Methylphenol ND 2.0 0.88 ug/l 88-75-5 2-Nitrophenol ND 5.0 0.96 ug/l 100-02-7 4-Nitrophenol ND 10 1.2 ug/l 87-86-5 Pentachlorophenol ND 4.0 1.4 ug/l 108-95-2 Phenol ND 2.0 0.39 ug/l 158-90-2 2,3,4,6-Tetrachlorophenol ND 5.0 1.5 ug/l 95-95-4 2,4,5-Trichlorophenol ND 5.0 1.3 ug/l 88-06-2 2,4,6-Trichlorophenol ND 5.0 0.92 ug/l 83-32-9 Acenaphthene ND 1.0 0.14 ug/l 208-96-8 Acenaphthylene ND 1.0 0.14 ug/l 208-96-8 Acenaphthylene ND 1.0 0.14 ug/l 120-12-7 Anthracene 1.0 1.0 0.21 ug/l 191-24-9 Atrazine ND 2.0 0.45 ug/l 100-52-7 Benzaldehyde ND 5.0 0.29 ug/l 101-24-2 Benzo(a)pyrene ND 1.0 0.21 ug/l 191-24-2 Benzo(b)fluoranthene ND 1.0 0.21 ug/l 191-24-2 Benzo(b)fluoranthene ND 1.0 0.21 ug/l 191-25-3 4-Bromophenyl phenyl ether ND 2.0 0.46 ug/l 205-98-7 Butyl benzyl phthalate ND 2.0 0.46 ug/l 205-58-7 Butyl benzyl phthalate ND 2.0 0.46 ug/l 205-58-7 2-Chloronaphthalene ND 2.0 0.46 ug/l 205-58-7 2-Chloronaphthalene ND 2.0 0.24 ug/l 205-58-7 2-Chloronaphthalene ND 2.0 0.24 ug/l 206-47-8 4-Chloroaniline ND 5.0 0.34 ug/l	95-57-8	2-Chlorophenol	ND	5.0	0.82	ug/l
105-67-9 2,4-Dimethylphenol ND 5.0 2.4 ug/l	59-50-7	4-Chloro-3-methyl phenol	ND	5.0	0.89	ug/l
51-28-5 2,4-Dinitrophenol ND 10 1.6 ug/l 534-52-1 4,6-Dinitro-o-cresol ND 5.0 1.3 ug/l 95-48-7 2-Methylphenol ND 2.0 0.89 ug/l 88-75-5 2-Nitrophenol ND 5.0 0.96 ug/l 100-02-7 4-Nitrophenol ND 10 1.2 ug/l 87-86-5 Pentachlorophenol ND 4.0 1.4 ug/l 108-95-2 Phenol ND 2.0 0.39 ug/l 58-90-2 2,3,4,6-Tetrachlorophenol ND 5.0 1.5 ug/l 95-95-4 2,4,5-Trichlorophenol ND 5.0 1.3 ug/l 88-96-2 2,4,6-Trichlorophenol ND 5.0 0.92 ug/l 88-32-9 Acenaphthylene ND 1.0 0.14 ug/l 98-86-2 Acetophenone ND 1.0 0.14 ug/l 100-52-7 Antracne ND <td< td=""><td>120-83-2</td><td>2,4-Dichlorophenol</td><td>ND</td><td>2.0</td><td>1.3</td><td>ug/l</td></td<>	120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l
534-52-1 4,6-Dinitro-o-cresol ND 5.0 1.3 ug/l 95-48-7 2-Methylphenol ND 2.0 0.89 ug/l 88-75-5 2-Nitrophenol ND 5.0 0.96 ug/l 100-02-7 4-Nitrophenol ND 10 1.2 ug/l 87-86-5 Pentachlorophenol ND 4.0 1.4 ug/l 108-95-2 Phenol ND 2.0 0.39 ug/l 58-90-2 2,3,4,6-Tetrachlorophenol ND 5.0 1.5 ug/l 95-95-4 2,4,5-Trichlorophenol ND 5.0 1.3 ug/l 88-06-2 2,4,6-Trichlorophenol ND 5.0 0.92 ug/l 83-32-9 Acenaphthene ND 1.0 0.19 ug/l 98-86-2 Acetophenone ND 1.0 0.14 ug/l 191-24-9 Atrazine ND 2.0 0.45 ug/l 100-52-7 Benzaldehyde ND 1.0	105-67-9	2,4-Dimethylphenol	ND	5.0	2.4	ug/l
95-48-7	51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/l
3&4-Methylphenol ND 2.0 0.88 ug/l 88-75-5 2-Nitrophenol ND 5.0 0.96 ug/l 100-02-7 4-Nitrophenol ND 10 1.2 ug/l 87-86-5 Pentachlorophenol ND 4.0 1.4 ug/l 108-95-2 Phenol ND 2.0 0.39 ug/l 58-90-2 2,3,4,6-Tetrachlorophenol ND 5.0 1.5 ug/l 95-95-4 2,4,5-Trichlorophenol ND 5.0 0.92 ug/l 88-06-2 2,4,6-Trichlorophenol ND 5.0 0.92 ug/l 83-32-9 Acenaphthylene ND 1.0 0.19 ug/l 98-86-2 Acetophenone ND 1.0 0.14 ug/l 98-86-2 Acetophenone ND 2.0 0.21 ug/l 100-52-7 Benzaldehyde ND 5.0 0.29 ug/l 100-52-7 Benzaldehyde ND 1.0 0.21 </td <td>534-52-1</td> <td>4,6-Dinitro-o-cresol</td> <td>ND</td> <td>5.0</td> <td>1.3</td> <td>ug/l</td>	534-52-1	4,6-Dinitro-o-cresol	ND	5.0	1.3	ug/l
3&4-Methylphenol ND 2.0 0.88 ug/l 88-75-5 2-Nitrophenol ND 5.0 0.96 ug/l 100-02-7 4-Nitrophenol ND 10 1.2 ug/l 87-86-5 Pentachlorophenol ND 4.0 1.4 ug/l 108-95-2 Phenol ND 2.0 0.39 ug/l 58-90-2 2,3,4,6-Tetrachlorophenol ND 5.0 1.5 ug/l 95-95-4 2,4,5-Trichlorophenol ND 5.0 1.3 ug/l 88-06-2 2,4,6-Trichlorophenol ND 5.0 0.92 ug/l 83-32-9 Acenaphthene ND 1.0 0.19 ug/l 208-96-8 Acenaphthylene ND 1.0 0.14 ug/l 98-86-2 Acetophenone ND 2.0 0.21 ug/l 100-52-7 Benzaldehyde ND 5.0 0.29 ug/l 100-52-7 Benzaldehyde ND 1.0 0.21 </td <td>95-48-7</td> <td>2-Methylphenol</td> <td>ND</td> <td>2.0</td> <td>0.89</td> <td>-6-</td>	95-48-7	2-Methylphenol	ND	2.0	0.89	-6-
88-75-5 2-Nitrophenol ND 5.0 0.96 ug/l 100-02-7 4-Nitrophenol ND 10 1.2 ug/l 87-86-5 Pentachlorophenol ND 4.0 1.4 ug/l 108-95-2 Phenol ND 2.0 0.39 ug/l 58-90-2 2,3,4,6-Tetrachlorophenol ND 5.0 1.5 ug/l 95-95-4 2,4,5-Trichlorophenol ND 5.0 0.92 ug/l 88-06-2 2,4,6-Trichlorophenol ND 5.0 0.92 ug/l 83-32-9 Acenaphthylene ND 1.0 0.19 ug/l 98-86-2 Acenaphthylene ND 1.0 0.14 ug/l 98-86-2 Acetophenone ND 2.0 0.21 ug/l 191-2-4-9 Atrazine ND 2.0 0.45 ug/l 100-52-7 Benzaldehyde ND 5.0 0.29 ug/l 56-55-3 Benzo(a)pyrene ND 1.0 </td <td></td> <td>3&4-Methylphenol</td> <td>ND</td> <td>2.0</td> <td>0.88</td> <td>_</td>		3&4-Methylphenol	ND	2.0	0.88	_
87-86-5 Pentachlorophenol ND 4.0 1.4 ug/l 108-95-2 Phenol ND 2.0 0.39 ug/l 58-90-2 2,3,4,6-Tetrachlorophenol ND 5.0 1.5 ug/l 95-95-4 2,4,5-Trichlorophenol ND 5.0 0.92 ug/l 88-06-2 2,4,6-Trichlorophenol ND 5.0 0.92 ug/l 83-32-9 Acenaphthene ND 1.0 0.19 ug/l 208-96-8 Acenaphthylene ND 1.0 0.14 ug/l 98-86-2 Acetophenone ND 2.0 0.21 ug/l 120-12-7 Anthracene 1.0 1.0 0.21 ug/l 1912-24-9 Atrazine ND 2.0 0.45 ug/l 100-52-7 Benzaldehyde ND 1.0 0.29 ug/l 50-32-8 Benzo(a)aphracene ND 1.0 0.21 ug/l 205-99-2 Benzo(b)fluoranthene ND	88-75-5	2-Nitrophenol	ND	5.0	0.96	
108-95-2 Phenol ND 2.0 0.39 ug/l 58-90-2 2,3,4,6-Tetrachlorophenol ND 5.0 1.5 ug/l 95-95-4 2,4,5-Trichlorophenol ND 5.0 0.92 ug/l 88-06-2 2,4,6-Trichlorophenol ND 5.0 0.92 ug/l 83-32-9 Acenaphthene ND 1.0 0.19 ug/l 208-96-8 Acenaphthylene ND 1.0 0.14 ug/l 98-86-2 Acetophenone ND 2.0 0.21 ug/l 120-12-7 Anthracene 1.0 1.0 0.21 ug/l 191-24-9 Atrazine ND 2.0 0.45 ug/l 100-52-7 Benzaldehyde ND 5.0 0.29 ug/l 50-32-8 Benzo(a)anthracene ND 1.0 0.21 ug/l 205-99-2 Benzo(b)fluoranthene ND 1.0 0.21 ug/l 191-24-2 Benzo(g,h.i)perylene ND	100-02-7	4-Nitrophenol	ND	10	1.2	ug/I
58-90-2 2,3,4,6-Tetrachlorophenol ND 5.0 1.5 ug/l 95-95-4 2,4,5-Trichlorophenol ND 5.0 1.3 ug/l 88-06-2 2,4,6-Trichlorophenol ND 5.0 0.92 ug/l 83-32-9 Acenaphthene ND 1.0 0.19 ug/l 208-96-8 Acenaphthylene ND 1.0 0.14 ug/l 98-86-2 Acetophenone ND 2.0 0.21 ug/l 120-12-7 Anthracene 1.0 1.0 0.21 ug/l 1912-24-9 Atrazine ND 2.0 0.45 ug/l 100-52-7 Benzaldehyde ND 5.0 0.29 ug/l 56-55-3 Benzo(a)anthracene ND 1.0 0.20 ug/l 50-32-8 Benzo(b)fluoranthene ND 1.0 0.21 ug/l 205-99-2 Benzo(b)fluoranthene ND 1.0 0.21 ug/l 101-24-2 Benzo(k)fluoranthene <	87-86-5	Pentachlorophenol	ND	4.0	1.4	
58-90-2 2,3,4,6-Tetrachlorophenol ND 5.0 1.5 ug/l 95-95-4 2,4,5-Trichlorophenol ND 5.0 0.92 ug/l 88-06-2 2,4,6-Trichlorophenol ND 5.0 0.92 ug/l 83-32-9 Acenaphthylene ND 1.0 0.19 ug/l 208-96-8 Acenaphthylene ND 1.0 0.14 ug/l 98-86-2 Acetophenone ND 2.0 0.21 ug/l 120-12-7 Anthracene 1.0 1.0 0.21 ug/l 1912-24-9 Atrazine ND 5.0 0.29 ug/l 100-52-7 Benzaldehyde ND 5.0 0.29 ug/l 56-55-3 Benzo(a)anthracene ND 1.0 0.20 ug/l 205-99-2 Benzo(b)fluoranthene ND 1.0 0.21 ug/l 191-24-2 Benzo(g,h,i)perylene ND 1.0 0.21 ug/l 207-08-9 Benzo(k)fluoranthene	108-95-2		ND	2.0	0.39	ug/l
88-06-2 2,4,6-Trichlorophenol ND 5.0 0.92 ug/l 83-32-9 Acenaphthene ND 1.0 0.19 ug/l 208-96-8 Acenaphthylene ND 1.0 0.14 ug/l 98-86-2 Acetophenone ND 2.0 0.21 ug/l 120-12-7 Anthracene 1.0 1.0 0.21 ug/l 1912-24-9 Atrazine ND 2.0 0.45 ug/l 100-52-7 Benzaldehyde ND 5.0 0.29 ug/l 56-55-3 Benzo(a)anthracene ND 1.0 0.20 ug/l 50-32-8 Benzo(a)pyrene ND 1.0 0.21 ug/l 205-99-2 Benzo(b)fluoranthene ND 1.0 0.21 ug/l 191-24-2 Benzo(g,h,i)perylene ND 1.0 0.21 ug/l 101-55-3 4-Bromophenyl phenyl ether ND 2.0 0.40 ug/l 85-68-7 Butyl benzyl phthalate ND 2.0 0.46 ug/l 92-52-4 1,1'-Biphenyl ND 1.0 0.21 ug/l 106-47-8 4-Chloroaniline ND 5.0 0.34 ug/l	58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.0	1.5	
88-06-2 2,4,6-Trichlorophenol ND 5.0 0.92 ug/l 83-32-9 Acenaphthene ND 1.0 0.19 ug/l 208-96-8 Acenaphthylene ND 1.0 0.14 ug/l 98-86-2 Acetophenone ND 2.0 0.21 ug/l 120-12-7 Anthracene 1.0 1.0 0.21 ug/l 1912-24-9 Atrazine ND 2.0 0.45 ug/l 100-52-7 Benzaldehyde ND 5.0 0.29 ug/l 56-55-3 Benzo(a)anthracene ND 1.0 0.20 ug/l 50-32-8 Benzo(b)fluoranthene ND 1.0 0.21 ug/l 205-99-2 Benzo(b)fluoranthene ND 1.0 0.21 ug/l 191-24-2 Benzo(g,h,i)perylene ND 1.0 0.34 ug/l 207-08-9 Benzo(k)fluoranthene ND 1.0 0.21 ug/l 85-68-7 Butyl benzyl phthalate <t< td=""><td>95-95-4</td><td>2,4,5-Trichlorophenol</td><td>ND</td><td>5.0</td><td>1.3</td><td>ug/I</td></t<>	95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.3	ug/I
208-96-8 Acenaphthylene ND 1.0 0.14 ug/l 98-86-2 Acetophenone ND 2.0 0.21 ug/l 120-12-7 Anthracene 1.0 1.0 0.21 ug/l 1912-24-9 Atrazine ND 2.0 0.45 ug/l 100-52-7 Benzaldehyde ND 5.0 0.29 ug/l 56-55-3 Benzo(a)anthracene ND 1.0 0.20 ug/l 50-32-8 Benzo(a)pyrene ND 1.0 0.21 ug/l 205-99-2 Benzo(b)fluoranthene ND 1.0 0.21 ug/l 191-24-2 Benzo(g,h,i)perylene ND 1.0 0.21 ug/l 207-08-9 Benzo(k)fluoranthene ND 1.0 0.21 ug/l 207-08-9 Benzo(k)fluoranthene ND 1.0 0.21 ug/l 85-68-7 Butyl benzyl phthalate ND 2.0 0.40 ug/l 85-68-7 Butyl benzyl phthalate ND 2.0 0.46 ug/l 92-52-4 1,1'-Biphenyl ND 1.0 0.21 ug/l 91-58-7 2-Chloronaphthalene ND 2.0 0.24 ug/l 106-47-8 4-Chloroaniline ND 5.0 0.34 ug/l	88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.92	-
98-86-2 Acetophenone ND 2.0 0.21 ug/l 120-12-7 Anthracene 1.0 1.0 0.21 ug/l 1912-24-9 Atrazine ND 2.0 0.45 ug/l 100-52-7 Benzaldehyde ND 5.0 0.29 ug/l 56-55-3 Benzo(a)anthracene ND 1.0 0.20 ug/l 50-32-8 Benzo(a)pyrene ND 1.0 0.21 ug/l 205-99-2 Benzo(b)fluoranthene ND 1.0 0.21 ug/l 191-24-2 Benzo(g,h,i)perylene ND 1.0 0.34 ug/l 207-08-9 Benzo(k)fluoranthene ND 1.0 0.21 ug/l 101-55-3 4-Bromophenyl phenyl ether ND 2.0 0.40 ug/l 85-68-7 Butyl benzyl phthalate ND 2.0 0.46 ug/l 92-52-4 1,1'-Biphenyl ND 1.0 0.21 ug/l 91-58-7 2-Chloronaphthalene ND 2.0 0.24 ug/l 106-47-8 4-Chloroaniline ND 5.0 0.34 ug/l	83-32-9	Acenaphthene	ND	1.0	0.19	ug/l
120-12-7 Anthracene 1.0 1.0 0.21 ug/l 1912-24-9 Atrazine ND 2.0 0.45 ug/l 100-52-7 Benzaldehyde ND 5.0 0.29 ug/l 56-55-3 Benzo(a)anthracene ND 1.0 0.21 ug/l 50-32-8 Benzo(a)pyrene ND 1.0 0.21 ug/l 205-99-2 Benzo(b)fluoranthene ND 1.0 0.21 ug/l 191-24-2 Benzo(g,h,i)perylene ND 1.0 0.34 ug/l 207-08-9 Benzo(k)fluoranthene ND 1.0 0.21 ug/l 101-55-3 4-Bromophenyl phenyl ether ND 2.0 0.40 ug/l 85-68-7 Butyl benzyl phthalate ND 2.0 0.46 ug/l 92-52-4 1,1'-Biphenyl ND 1.0 0.21 ug/l 91-58-7 2-Chloronaphthalene ND 2.0 0.24 ug/l 106-47-8 4-Chloroaniline	208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l
1912-24-9 Atrazine ND 2.0 0.45 ug/l 100-52-7 Benzaldehyde ND 5.0 0.29 ug/l 56-55-3 Benzo(a)anthracene ND 1.0 0.20 ug/l 50-32-8 Benzo(b)fluoranthene ND 1.0 0.21 ug/l 205-99-2 Benzo(b)fluoranthene ND 1.0 0.21 ug/l 191-24-2 Benzo(g,h,i)perylene ND 1.0 0.34 ug/l 207-08-9 Benzo(k)fluoranthene ND 1.0 0.21 ug/l 101-55-3 4-Bromophenyl phenyl ether ND 2.0 0.40 ug/l 85-68-7 Butyl benzyl phthalate ND 2.0 0.46 ug/l 92-52-4 1,1'-Biphenyl ND 1.0 0.21 ug/l 91-58-7 2-Chloronaphthalene ND 2.0 0.24 ug/l 106-47-8 4-Chloroaniline ND 5.0 0.34 ug/l	98-86-2	Acetophenone	ND	2.0	0.21	ug/l
100-52-7 Benzaldehyde ND 5.0 0.29 ug/l 56-55-3 Benzo(a)anthracene ND 1.0 0.20 ug/l 50-32-8 Benzo(a)pyrene ND 1.0 0.21 ug/l 205-99-2 Benzo(b)fluoranthene ND 1.0 0.21 ug/l 191-24-2 Benzo(g,h,i)perylene ND 1.0 0.34 ug/l 207-08-9 Benzo(k)fluoranthene ND 1.0 0.21 ug/l 101-55-3 4-Bromophenyl phenyl ether ND 2.0 0.40 ug/l 85-68-7 Butyl benzyl phthalate ND 2.0 0.46 ug/l 92-52-4 1,1'-Biphenyl ND 1.0 0.21 ug/l 91-58-7 2-Chloronaphthalene ND 2.0 0.24 ug/l 106-47-8 4-Chloroaniline ND 5.0 0.34 ug/l	120-12-7	Anthracene	1.0	1.0	0.21	ug/l
100-52-7 Benzaldehyde ND 5.0 0.29 ug/l 56-55-3 Benzo(a)anthracene ND 1.0 0.20 ug/l 50-32-8 Benzo(a)pyrene ND 1.0 0.21 ug/l 205-99-2 Benzo(b)fluoranthene ND 1.0 0.21 ug/l 191-24-2 Benzo(g,h,i)perylene ND 1.0 0.34 ug/l 207-08-9 Benzo(k)fluoranthene ND 1.0 0.21 ug/l 101-55-3 4-Bromophenyl phenyl ether ND 2.0 0.40 ug/l 85-68-7 Butyl benzyl phthalate ND 2.0 0.46 ug/l 92-52-4 1,1'-Biphenyl ND 1.0 0.21 ug/l 91-58-7 2-Chloronaphthalene ND 2.0 0.24 ug/l 106-47-8 4-Chloroaniline ND 5.0 0.34 ug/l	1912-24-9	Atrazine	ND	2.0	0.45	ug/l
50-32-8 Benzo(a)pyrene ND 1.0 0.21 ug/l 205-99-2 Benzo(b)fluoranthene ND 1.0 0.21 ug/l 191-24-2 Benzo(g,h,i)perylene ND 1.0 0.34 ug/l 207-08-9 Benzo(k)fluoranthene ND 1.0 0.21 ug/l 101-55-3 4-Bromophenyl phenyl ether ND 2.0 0.40 ug/l 85-68-7 Butyl benzyl phthalate ND 2.0 0.46 ug/l 92-52-4 1,1'-Biphenyl ND 1.0 0.21 ug/l 91-58-7 2-Chloronaphthalene ND 2.0 0.24 ug/l 106-47-8 4-Chloroaniline ND 5.0 0.34 ug/l	100-52-7	Benzaldehyde	ND	5.0	0.29	
205-99-2 Benzo(b)fluoranthene ND 1.0 0.21 ug/l 191-24-2 Benzo(g,h,i)perylene ND 1.0 0.34 ug/l 207-08-9 Benzo(k)fluoranthene ND 1.0 0.21 ug/l 101-55-3 4-Bromophenyl phenyl ether ND 2.0 0.40 ug/l 85-68-7 Butyl benzyl phthalate ND 2.0 0.46 ug/l 92-52-4 1,1'-Biphenyl ND 1.0 0.21 ug/l 91-58-7 2-Chloronaphthalene ND 2.0 0.24 ug/l 106-47-8 4-Chloroaniline ND 5.0 0.34 ug/l	56-55-3	Benzo (a) anthracene	ND	1.0	0.20	ug/I
191-24-2 Benzo(g,h,i)perylene ND 1.0 0.34 ug/l 207-08-9 Benzo(k)fluoranthene ND 1.0 0.21 ug/l 101-55-3 4-Bromophenyl phenyl ether ND 2.0 0.40 ug/l 85-68-7 Butyl benzyl phthalate ND 2.0 0.46 ug/l 92-52-4 1,1'-Biphenyl ND 1.0 0.21 ug/l 91-58-7 2-Chloronaphthalene ND 2.0 0.24 ug/l 106-47-8 4-Chloroaniline ND 5.0 0.34 ug/l	50-32-8	Benzo(a)pyrene	ND	1.0	0.21	ug/l
207-08-9 Benzo(k)fluoranthene ND 1.0 0.21 ug/l 101-55-3 4-Bromophenyl ether ND 2.0 0.40 ug/l 85-68-7 Butyl benzyl phthalate ND 2.0 0.46 ug/l 92-52-4 1,1'-Biphenyl ND 1.0 0.21 ug/l 91-58-7 2-Chloronaphthalene ND 2.0 0.24 ug/l 106-47-8 4-Chloroaniline ND 5.0 0.34 ug/l	205-99-2	Benzo(b) fluoranthene	ND	1.0	0.21	ug/l
101-55-3 4-Bromophenyl phenyl ether ND 2.0 0.40 ug/l 85-68-7 Butyl benzyl phthalate ND 2.0 0.46 ug/l 92-52-4 1,1'-Biphenyl ND 1.0 0.21 ug/l 91-58-7 2-Chloronaphthalene ND 2.0 0.24 ug/l 106-47-8 4-Chloroaniline ND 5.0 0.34 ug/l	191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l
85-68-7 Butyl benzyl phthalate ND 2.0 0.46 ug/l 92-52-4 1,1'-Biphenyl ND 1.0 0.21 ug/l 91-58-7 2-Chloronaphthalene ND 2.0 0.24 ug/l 106-47-8 4-Chloroaniline ND 5.0 0.34 ug/l	207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l
92-52-4 1,1'-Biphenyl ND 1.0 0.21 ug/l 91-58-7 2-Chloronaphthalene ND 2.0 0.24 ug/l 106-47-8 4-Chloroaniline ND 5.0 0.34 ug/l	101-55-3		ND	2.0	0.40	ug/l
91-58-7 2-Chloronaphthalene ND 2.0 0.24 ug/l 106-47-8 4-Chloroaniline ND 5.0 0.34 ug/l	85-68-7	Butyl benzyl philialate	ND	2.0	0.46	ug/I
106-47-8 4-Chloroaniline ND 5.0 0.34 ug/l		1,1'-Biphenyl	ND	1.0	0.21	ug/l
0.0	91-58-7	2-Chloronaphthalene	ND	2.0	0.24	-
		4-Chloroaniline	ND	5.0	0.34	ug/l
	86-74-8	Carbazole	ND	1.0	0.23	ug/l

ND = Not detected

 $MDL = Method\ Detection\ Limit$

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: S-43D JC28248-4

Lab Sample ID: Matrix:

AQ - Ground Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 09/20/16 Date Received: 09/23/16

Percent Solids: n/a

ABN TCL Special List

Mcthod:

Project:

ADM TOLI opediat Else						
CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	10.8	2.0	0.65	ug/l	
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/I	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/I	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.40	ug/I	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/I	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.55	ug/I	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.48	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.51	ug/l	
123-91-1	1,4-Dioxane	4270 a	100	66	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.33	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.22	ug/I	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.50	ug/I	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.23	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.26	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/I	
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l	
86-73-7	Fluorene	ND	1.0	0.17	ug/I	
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.49	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/I	
67-72-1	Hexachloroethane	ND	2.0	0.39	ug/I	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.33	ug/l	
78-59-1	Isophorone	ND	2.0	0.28	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.0	0.26	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/I	
88-74-4	2-Nitroaniline	ND	5.0	0.28	ug/I	
99-09-2	3-Nitroaniline	ND	5.0	0.39	ug/I	
100-01-6	4-Nitroaniline	ND	5.0	0.44	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.64	ug/I	
621-64-7	N-Nitroso-di-n-propylamine	ND.	2.0	0.48	ug/I	1
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.22	ug/l	- 1
85-01-8	Phenanthrene	ND	1.0	0.18	ug/I	
129-00-0	Pyrene	ND	1.0	0.22	ug/l	- /
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.37	ug/I	١
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	36%	0% h	14-88	8%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: S-43D Lab Sample ID:

JC28248-4

Matrix: Method: AQ - Ground Water

Project:

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 09/20/16

Date Received: 09/23/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
4165-62-2 118-79-6 4165-60-0 321-60-8 1718-51-0	Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	26% 76% 75% 73% 51%	0% b 0% b 0% b 0% b	10-110% 39-149% 32-128% 35-119% 10-126%

- (a) Result is from Run# 2
- (b) Outside control limits due to dilution.

Report of Analysis

Page 1 of 1

Client Sample ID: S-43D Lab Sample ID:

JC28248-4

Matrix: Method: AQ Ground Water

SW846 8270D BY SIM SW846 3510C

Date Sampled: 09/20/16 Date Received: 09/23/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

File ID 3P55955.D Run #1

DF Analyzed 1 09/28/16

By SG Prep Date 09/26/16

Prep Batch OP97271A

0

Analytical Batch E3P2573

Run #2

Initial Volume Final Volume 1000 ml

 $1.0 \, \mathrm{ml}$

Run #1 Run #2

CAS No.

91-20-3

CAS No.

4165-60-0

321-60-8

1718-51-0

Compound

Naphthalene

Nitrobenzene-d5

2-Fluorohiphenyl

Terphenyl-d14

Result

ND

RL

Run# 2

Units

0.10

0.029

Limits

MDL

ug/l

Surrogate Recoveries

55%

Run#1

24-125% 49% 19-127% 38% 10-119%

Page 1 of 1

Client Sample ID: S-43D

Method:

Project:

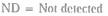
Lab Sample ID: JC28248-4 Matrix:

AQ - Ground Water SW846-8015C (DAI)

BMSMC, Building 5 Area, PR

Date Sampled: 09/20/16

Q


09/23/16 Date Received: Percent Solids: n/a

Run #1	File ID	DF	Analyzed 09/27/16	By	Prep Date	Prep Batch	Analytical Batch
Run #2	GH106693.D	1		XPL	n/a	n/a	GGH5504

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units
64-17-5 78-83-1 67-63-0 71-23-8 71-36-3 78-92-2 67-56-1	Ethanol Isobutyl Alcohol Isopropyl Alcohol n-Propyl Alcohol n-Butyl Alcohol sec-Butyl Alcohol Methanol	ND ND ND ND ND ND ND	200 100 100 100 100 100 200	55 36 68 43 87 66 71	ug/l ug/l ug/l ug/l ug/l ug/l
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	ts
111-27-3	Hexanol	86%		56-14	45%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-43D Lab Sample ID:

JC28248-4

Matrix:

AQ - Ground Water

Method: Project:

SW846 8081B SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 09/20/16

Q

Date Received: 09/23/16

Percent Solids: n/a

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	1G128043.D	1	10/06/16	DS	10/06/16	OP97553	G1G4105
Run #2 b	1G127940.D	1	10/05/16	KD	09/26/16	OP97273	G1G4103

	Initial Volume	Final Volume
Run #1	980 ml	10.0 ml
Run #2	1000 ml	10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	1
309-00-2	Aldrin	ND	0.010	0.0062	ug/l	
319-84-6	alpha-BHC	ND	0.010	0.0061	ug/l	
319-85-7	beta-BHC	ND	0.010	0.0058	ug/l	
319-86-8	delta-BHC	ND	0.010	0.0047	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0028	ug/I	
5103-71-9	alpha-Chlordane	ND	0.010	0.0047	ug/I	
5103-74-2	gamma-Chlordane	ND	0.010	0.0047	ug/I	
60-57-1	Dieldrin	ND	0.010	0.0037	ug/I	
72-54-8	4,4'-DDD	ND	0.010	0.0039	ug/l	
72-55-9	4,4'-DDE	ND	0.010	0.0063	ug/l	
50-29-3	4,4'-DDT	ND	0.010	0.0051	ug/l	
72-20-8	Endrin	ND	0.010	0.0051	ug/I	
1031-07-8	Endosulfan sulfate	ND	0.010	0.0054	ug/l	
7421-93-4	Endrin aldehyde	ND	0.010	0.0052	ug/l	
53494-70-5	Endrin ketone	ND	0.010	0.0052	ug/I	
959-98-8	Endosulfan-I	ND	0.010	0.0051	ug/l	
33213-65-9	Endosulfan-II	ND	0.010	0.0044	ug/l	
76-44-8	Heptachlor	ND	0.010	0.0039	ug/I	
1024-57-3	Heptachlor epoxide	ND	0.010	0.0067	ug/l	
72-43-5	Methoxychlor	ND	0.020	0.0058	ug/I	
8001-35-2	Toxaphene	ND	0.26	0.19	ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limit	S	
877-09-8	Tetrachloro-m-xylene	87%	121%	26-13	2%	
877-09-8	Tetrachloro-m-xylene	68%	73%	26-13	2%	
2051-24-3	Decachlorobiphenyl	74%	54%	10-11	8%	
2051-24-3	Decachlorobiphenyl	60%	33%	10-11	8%	

(a) Re-extracted due to BS outside in house QC limits. Originally prep date was within holding time.

(b) Confirmation run.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value :

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 3

Client Sample ID: S-43S

Lab Sample ID: JC28248-5

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 09/20/16 Date Received: 09/23/16

Q

Percent Solids: n/a

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	6P30235.D	1	09/29/16	ΛC	09/26/16	OP97271	E6P1409
Run #2	6P30269.D	100	09/30/16	ΛC	09/26/16	OP97271	E6P1410

	Initial Volume	Final Volume
Run #1	995 ml	1.0 ml
Run #2	995 ml	1.0 ml

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.0	0.82	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	0.90	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/I
105-67-9	2,4-Dimethylphenol	ND	5.0	2.5	ug/l
51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.0	1.3	ug/l
95-48-7	2-Methylphenol	ND	2.0	0.89	ug/l
	3&4-Methylphenol	ND	2.0	0.88	ug/I
88-75-5	2-Nitrophenol	ND	5.0	0.96	ug/l
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.0	1.4	ug/l
108-95-2	Phenol	ND	2.0	0.39	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.0	1.5	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.3	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.93	ug/l
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l
98-86-2	Асеторнеполе	ND	2.0	0.21	ug/l
120-12-7	Anthracene	1.4	1.0	0.21	ug/l
1912-24-9	Atrazine	ND	2.0	0.45	ug/I
100-52-7	Benzaldehyde	ND	5.0	0.29	ug/I
56-55-3	Benzo(a)anthracene	ND	1.0	0.20	ug/l
50-32-8	Benzo(a) pyrene	ND	1.0	0.21	ug/l
205-99-2	Benzo(b) fluoranthene	ND	1.0	0.21	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/I
207-08-9	Benzo(k) fluoranthene	ND	1.0	0.21	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.41	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.0	0.46	ug/l
92-52-4	1,1'-Biphenyl	ND	1.0	0.21	ug/l
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l
106-47-8	4-Chloroaniline	ND	5.0	0.34	ug/l
86-74-8	Carbazole	ND	1.0	0.23	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: S-43S Lab Sample ID: JC28248-5

Matrix:

AQ - Ground Water

Method: Project:

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 09/20/16 Date Received: 09/23/16

Q

Percent Solids: n/a

ABN TCL Special List

ABIN I CL	opeciai List				
CAS No.	Compound	Result	RL	MDL	Units
105-60-2	Caprolactam	ND	2.0	0.65	ug/l
218-01-9	Chrysene	ND	1.0	0.18	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.41	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.55	ug/I
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.48	ug/I
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.51	ug/I
123-91-1	1,4-Dioxane	5060 a	100	66	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.33	ug/l
132-64-9	Dibenzofuran	ND	5.0	0.22	ug/I
84-74-2	Di-n-butyl phthalate	ND	2.0	0.50	ug/I
117-84-0	Di-n-octyl phthalate	ND	2.0	0.24	ug/l
84-66-2	Diethyl phthalate	ND	2.0	0.26	ug/l
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l
86-73-7	Fluorene	ND	1.0	0.17	ug/I
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l
87-68-3	Hexachlorobutadiene	ND	1.0	0.49	ug/I
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/I
67-72-1	Hexachloroethane	ND	2.0	0.39	ug/I
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.33	ug/l
78-59-1	Isophorone.	ND	2.0	0.28	ug/l
90-12-0	1-Methylnaphthalene	ND	1.0	0.26	ug/l
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/I
88-74-4	2-Nitroaniline	ND	5.0	0.28	ug/l
99-09-2	3-Nitroaniline	ND	5.0	0.39	ug/l
100-01-6	4-Nitroaniline	ND	5.0	0.44	ug/l
98-95-3	Nitrobenzene	ND	2.0	0.65	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.48	ug/I
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.22	ug/l
85-01-8	Phenanthrene	ND	1.0	0.18	ug/I
129-00-0	Pyrene	ND	1.0	0.22	ug/l
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.37	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts

367-12-4

45%

2-Fluorophenol

14-88%

0% b

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 3 of 3

Client Sample ID: S-43S

Lab Sample ID: JC28248-5

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 09/20/16 Date Received: 09/23/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
4165-62-2	Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	33%	0% b	10-110%
118-79-6		88%	0% b	39-149%
4165-60-0		84%	0% b	32-128%
321-60-8		86%	0% b	35-119%
1718-51-0		60%	0% b	10-126%

(a) Result is from Run# 2

(b) Outside control limits due to dilution.

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-43S Lab Sample ID:

JC28248-5

Matrix:

Method:

Project:

AQ - Ground Water

SW846 8270D BY SIM SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 09/20/16 Date Received: 09/23/16

Percent Solids: n/a

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** Run #1 3P55956.D 1 09/28/16 SG 09/26/16 OP97271A E3P2573 Run #2

RL

MDL

Units

Run #1	Initial Volume	Final Volume	þ
Run #2	995 ml	1.0 ml	
CAS No.	Compound		Result

91-20-3	Naphthalene	ND	0.10	0.030 ug/l
CAS No.	Surrogate Recoveries	Run# I	Run# 2	Limits
4165-60-0 321-60-8 1718-51-0	Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	60% 50% 41%		24-125% 19-127% 10-119%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Ву

XPL

Prep Date

n/a

Page 1 of 1

Client Sample ID: S-43S

Lab Sample ID: JC28248-5

File ID

GH106696.D

Matrix:

AQ - Ground Water

Method: Project:

Run #1

Run #2

SW846-8015C (DAI)

DF

1

BMSMC, Building 5 Area, PR

Analyzed

09/27/16

Date Sampled: 09/20/16

n/a

GGH5504

Date Received: 09/23/16

Percent Solids: n/a

Prep Batch

Analytical Batch

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units
64-17-5 78-83-1 67-63-0 71-23-8 71-36-3 78-92-2	Ethanol Isobutyl Alcohol Isopropyl Alcohol n-Propyl Alcohol n-Butyl Alcohol sec-Butyl Alcohol	ND ND ND ND ND	200 100 100 100 100	55 36 68 43 87 66	ug/l ug/l ug/l ug/l ug/l ug/l
67-56-1	Methanol	ND	200	71	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
111-27-3	Hexanol	84%		56-1	45%

MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Report of Analysis

Page I of 1

Client Sample ID: S-43S

Lab Sample ID: JC28248-5

Matrix:

AQ - Ground Water

Method:

SW846 8081B SW846 3510C

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 09/20/16

Date Received: 09/23/16

Q

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1 a	1G128044.D	1	10/06/16	DS	10/06/16	OP97553	G1G4105
Run #2 b	1G127941.D	1	10/05/16	KD	09/26/16	OP97273	G1G4103

	Initial Volume	Final Volume	
Run #1	980 ml	10.0 ml	
Run #2	1000 ml	10.0 ml	

Pesticide TCL List

CAS No.	Compound	Result	RL .	MDL	Units
309-00-2	Aldrin	ND	0.010	0.0062	ug/l
319-84-6	alpha-BHC	ND	0.010	0.0061	ug/l
319-85-7	beta-BHC	ND	0.010	0.0058	ug/l
319-86-8	delta-BHC	ND	0.010	0.0047	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0028	ug/l
5103-71-9	alpha-Chlordane	ND	0.010	0.0047	ug/l
5103-74-2	gamma-Chlordane	ND	0.010	0.0047	ug/l
60-57-1	Dieldrin	ND	0.010	0.0037	ug/I
72-54-8	4,4'-DDD	ND	0.010	0.0039	ug/l
72-55-9	4,4'-DDE	ND	0.010	0.0063	ug/l
50-29-3	4,4'-DDT	ND	0.010	0.0051	ug/l
72-20-8	Endrin	ND	0.010	0.0051	ug/l
1031-07-8	Endosulfan sulfate	ND	0.010	0.0054	ug/l
7421-93-4	Endrin aldehyde	ND	0.010	0.0052	ug/I
53494-70-5	Endrin ketone	ND	0.010	0.0052	ug/I
959-98-8	Endosulfan-I	ND	0.010	0.0051	ug/I
33213-65-9	Endosulfan-II	ND	0.010	0.0044	ug/l
76-44-8	Heptachlor	ND	0.010	0.0039	ug/I
1024-57-3	Heptachlor epoxide	ND	0.010	0.0067	ug/l
72-43-5	Methoxychlor	ND	0.020	0.0058	ug/I
8001-35-2	Toxaphene	ND	0.26	0.19	ug/l
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	ts
877-09-8	Tetrachloro-m-xylene	85%	118%	26-13	2%
877-09-8	Tetrachloro-m-xylene	68%	73%	26-13	2%
2051-24-3	Decachlorobiphenyl	67%	35%	10-11	8%
2051-24-3	Decachlorobiphenyl	59%	21%	10-11	8%

(a) Re-extracted due to BS outside in house QC limits. Originally prep date was within holding time.

(b) Confirmation run.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID: MW-20D Lab Sample ID:

JC28248-6

Matrix:

Method:

AQ - Ground Water SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 09/20/16

Date Received: 09/23/16 Percent Solids: n/a

Project:

Run #1

File ID 6P30236.D DF 1

Analyzed By 09/29/16 AC Prep Date 09/26/16

Prep Batch OP97271

Q

Analytical Batch

E6P1409

Run #2

Initial Volume Final Volume 997 ml

Run #1 Run #2 $1.0 \, \mathrm{ml}$

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.0	0.82	ug/I
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	0.89	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.0	2.4	ug/I
51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/I
534-52-1	4,6-Dinitro-o-cresol	ND	5.0	1.3	ug/l
95-48-7	2-Methylphenol	ND	2.0	0.89	ug/l
	3&4-Methylphenol	ND	2.0	0.88	ug/l
88-75-5	2-Nitrophenol	ND	5.0	0.96	ug/I
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.0	1.4	ug/I
108-95-2	Phenol	ND	2.0	0.39	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.0	1.5	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.3	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.93	ug/l
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l
98-86-2	Acetophenone	ND	2.0	0.21	ug/I
120-12-7	Anthracene	ND	1.0	0.21	ug/l
1912-24-9	Atrazine	ND	2.0	0.45	ug/l
100-52-7	Benzaldehyde	ND	5.0	0.29	ug/l
56-55-3	Benzo(a)anthracene	ND	1.0	0.20	ug/l
50-32-8	Benzo(a)pyrene	ND	1.0	0.21	ug/I
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	0.1	0.34	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.41	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.0	0.46	ug/I
92-52-4	1,1'-Biphenyl	ND	1.0	0.21	ug/l
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l
106-47-8	4-Chloroaniline	ND	5.0	0.34	ug/l
86-74-8	Carbazole	ND	1.0	0.23	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-20D Lab Sample ID:

JC28248-6

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 09/20/16 Date Received: 09/23/16

Percent Solids: n/a

ABN TCL Special List

ABN TCL	opecial Fist					
CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.0	0.65	ug/I	
218-01-9	Chrysene	ND	1.0	0.18	ug/I	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.40	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.55	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.48	ug/I	
91-94-1	3,3*-Dichlorobenzidine	ND	2.0	0.51	ug/l	
123-91-1	1,4-Dioxane	10.2	1.0	0.66	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0:33	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.22	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.50	ug/I	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.23	ug/l	
84-66-2	Diethyl plithalate	ND	2.0	0.26	ug/I	
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/I	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.17	ug/I	
86-73-7	Fluorene	ND	1.0	0.17	ug/I	
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/I	
87-68-3	Hexachlorobutadiene	ND	1.0	0.49	ug/I	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/I	
67-72-1	Hexachloroethane	NĐ	2.0	0.39	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.33	ug/l	
78-59-1	Isophorone	ND	2.0	0.28	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.0	0.26	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/I	
88-74-4	2-Nitroaniline	ND	5.0	0.28	ug/l	
99-09-2	3-Nitroaniline	ND	5.0	0.39	ug/l	
100-01-6	4-Nitroaniline	ND	5.0	0.44	ug/I	
98-95-3	Nitrobenzene	ND	2.0	0.64	ug/I	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.48	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.22	ug/I	
85-01-8	Phenanthrene	ND	1.0	0.18	ug/I	
129-00-0	Pyrene	ND	1.0	0.22	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.37	ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	

ND = Not detected

367-12-4

MDL = Method Detection Limit

47%

RL = Reporting Limit

E = Indicates value exceeds calibration range

2-Fluorophenol

J = Indicates an estimated value

14-88%

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: MW-20D

Lab Sample ID:

JC28248-6

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 09/20/16

Date Received: 09/23/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# I	Run# 2	Limits
4165-62-2	PhenoI-d5	31%		10-110%
118-79-6	2,4,6-Tribromophenol	85%		39-149%
4165-60-0	Nitrobenzene-d5	82%		32-128%
321-60-8	2-Fluorobiphenyl	83%		35-119%
1718-51-0	Terphenyl-d14	67%		10-126%

Report of Analysis

Page 1 of 1

Client Sample ID: MW-20D Lab Sample ID:

JC28248-6

Matrix:

AQ - Ground Water

Method: Project:

SW846 8270D BY SIM SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 09/20/16

Date Received: 09/23/16

Percent Solids: n/a

Run #1 3P55957.D 1 09/28/16 SG 09/26/16 OP97271								
0		File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
D #0	Run #1	3P55957.D	1	09/28/16	SG	09/26/16	OP97271A	E3P2573
Run #2	Run #2							

RL

MDL

Units

Q

Run #1	Initial Volume	Final Volume	
Run #2	997 ml	1.0 ml	
CAS No.	Compound		Result

91-20-3	Naphthalene	ND	0.10	0.029 ug/l
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
4165-60-0 321-60-8 1718-51-0	Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	59% 50% 42%		24-125% 19-127% 10-119%

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

By

XPL

Prep Date

n/a

Client Sample ID: MW-20D Lab Sample ID:

JC28248-6

Matrix:

AQ - Ground Water

Method: Project:

SW846-8015C (DAI)

DF

BMSMC, Building 5 Area, PR

Analyzed

09/27/16

Date Sampled: 09/20/16

n/a

Q

Date Received: 09/23/16

Percent Solids: n/a

Prep Batch Analytical Batch GGH5504

Run #1 Run #2

Low Molecular Alcohol List

File ID

GH106697.D

CAS No.	Compound	Result	RL	MDL	Units
64-17-5	Ethanol	ND	200	55	ug/l
78-83-1 67-63-0	Isobutyl Alcohol Isopropyl Alcohol	ND ND	100 100	36 68	ug/l ug/l
71-23-8 71-36-3	n-Propyl Alcohol n-Butyl Alcohol	ND ND	100 100	43	ug/I
78-92-2	sec-Butyl Alcohol	ND	100	87 66	ug/l ug/l
67-56-1	Methanol	ND	200	71	ug/l
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its
111-27-3	Hexanol	91%		56-1	45%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page I of 1

Client Sample ID: MW-20D Lab Sample ID:

JC28248-6

Matrix. Method:

Project:

AQ - Ground Water

SW846 8081B SW846 3510C BMSMC, Building 5 Area, PR Date Sampled: 09/20/16 Date Received: 09/23/16

Q

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1 a	1G128045.D	1	10/06/16	DS	10/06/16	OP97553	G1G4105
Run #2 b	1G127942.D	1	10/05/16	KD	09/26/16	OP97273	G1G4103

	Initial Volume	Final Volume
Run #1	1000 ml	10.0 ml
Run #2	1000 ml	10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.010	0.0060	ug/l
319-84-6	alpha-BHC	ND	0.010	0.0060	ug/I
319-85-7	beta-BHC	ND	0.010	0.0057	ug/I
319-86-8	delta-BHC	ND	0.010	0.0046	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0028	ug/I
5103-71-9	alpha-Chlordane	ND	0.010	0.0046	ug/I
5103-74-2	gamma-Chlordane	ND	0.010	0.0046	ug/I
60-57-1	Dieldrin	ND	0.010	0.0036	ug/l
72-54-8	4,4'-DDD	ND	0.010	0.0038	ug/l
72-55-9	4,4'-DDE	ND	0.010	0.0062	ug/l
50-29-3	4,4'-DDT	ND	0.010	0.0050	ug/l
72-20-8	Endrin	ND	0.010	0.0050	ug/l
1031-07-8	Endosulfan sulfate	ND	0.010	0.0053	ug/l
7421-93-4	Endrin aldehyde	ND	0.010	0.0051	ug/I
53494-70-5	Endrin ketone	ND	0.010	0.0051	ug/l
959-98-8	Endosulfan-I	ND	0.010	0.0050	ug/l
33213-65-9	Endosulfan-II	ND	0.010	0.0043	ug/l
76-44-8	Heptachlor	ND	0.010	0.0038	ug/l
1024-57-3	Heptachlor epoxide	ND	0.010	0.0065	ug/I
72-43-5	Methoxychlor	ND	0.020	0.0057	ug/l
8001-35-2	Toxaphene	ND	0.25	0.18	ug/l
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	ts
877-09-8	Tetrachloro-m-xylene	62%	87%	26-13	32%
877-09-8	Tetrachloro-m-xylene	64%	82%	26-13	2%
2051-24-3	Decachlorobiphenyl	51%	54%	10-11	8%
2051-24-3	Decachlorobiphenyl	52%	48%	10-11	.8%

(a) Re-extracted due to BS outside in house QC limits. Originally prep date was within holding time.

(b) Confirmation run.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

SGS Accutest LabLink@930192 10:15 12-Oct-2016

Report of Analysis

Page 1 of 3

Client Sample ID: Lab Sample ID:

MW-20S JC28248-7

Matrix:

AQ = Ground Water

Method: Project:

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled:

09/20/16 Date Received: 09/23/16

Percent Solids: n/a

Run #1

File ID 6P30237.D DF 1

Analyzed 09/29/16

By ΛC

Prep Date 09/26/16

Prep Batch OP97271

Analytical Batch E6P1409

Run #2

Initial Volume 995 ml

Final Volume $1.0 \, \mathrm{ml}$

Run #1 Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Unit
95-57-8	2-Chlorophenol	ND	5.0	0.82	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	0.90	ug/I
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/f
105-67-9	2,4-Dimethylphenol	ND	5.0	2.5	ug/I
51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.0	1.3	ug/l
95-48-7	2-Methylphenol	ND	2.0	0.89	ug/l
	3&4-Methylphenol	ND	2.0	0.88	ug/l
88-75-5	2-Nitrophenol	ND	5.0	0.96	ug/l
100-02-7	4-Nitrophenol	ND	10	1.2	ug/I
87-86-5	Pentachlorophenol	ND	4.0	1.4	ug/l
108-95-2	Plienol	ND	2.0	0.39	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.0	1.5	ug/I
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.3	ug/I
88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.93	ug/I
83-32-9	Acenaphthene	ND	1.0	0.19	ug/I
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l
98-86-2	Acetophenone	ND	2.0	0.21	ug/I
120-12-7	Anthracene	ND	1.0	0.21	ug/l
1912-24-9	Atrazine	ND	2.0	0.45	ug/I
100-52-7	Benzaldehyde	ND	5.0	0.29	ug/I
56-55-3	Benzo(a)anthracene	ND	1.0	0.20	ug/l
50-32-8	Benzo(a)pyrene	ND	1.0	0.21	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.41	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.0	0.46	ug/I
92-52-4	1,1'-Biphenyl	ND	1.0	0.21	ug/l
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/I
106-47-8	4-Chloroaniline	ND	5.0	0.34	ug/l
86-74-8	Carbazole	ND	1.0	0.23	ug/l

tael Infant Méndez (C = 188)

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID: MW-20S

Lab Sample ID: JC28248-7

Matrix:

AQ - Ground Water

Method: SW846 8270D SW846 3510C Project: BMSMC, Building 5 Area, PR

Percent Solids: n/a

Q

Date Sampled: 09/20/16 Date Received: 09/23/16

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
105-60-2	Caprolactam	ND	2.0	0.65	ug/l
218-01-9	Chrysene	ND	1.0	0.18	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/I
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/I
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.41	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/I
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.55	ug/I
606-20-2	2,6-Dinitrotoluene	ND	0.1	0.48	ug/I
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.51	ug/I
53-70-3	Dibenzo(a,h)anthracene	ND	0.1	0.33	ug/l
132-64-9	Dibenzofuran	ND	5.0	0.22	ug/I
84-74-2	Di-n-butyl phthalate	ND	2.0	0.50	ug/I
117-84-0	Di-n-octyl phthalate	ND	2.0	0.24	ug/l
84-66-2	Diethyl phthalate	ND	2.0	0.26	ug/l
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l
86-73-7	Fluorene	ND	1.0	0.17	ug/l
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l
87-68-3	Hexachlorobutadiene	ND	1.0	0.49	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l
67-72-1	Hexachloroethane	ND	2.0	0.39	ug/I
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.33	ug/l
78-59-1	Isophorone	ND	2.0	0.28	ug/l
90-12-0	1-Methylnaphthalene	ND	1.0	0.26	ug/l
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l
88-74-4	2-Nitroaniline	ND	5.0	0.28	ug/l
99-09-2	3-Nitroaniline	ND	5.0	0.39	ug/l
100-01-6	4-Nitroaniline	ND	5.0	0.44	ug/l
98-95-3	Nitrobenzene	ND	2.0	0.65	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.48	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.22	ug/l
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l
129-00-0	Pyrene	ND	1.0	0.22	ug/l
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.37	ug/l
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	its
367-12-4	2-Fluorophenol	38%		14-8	8%
4165-62-2	Phenol-d5	24%		10-1	10%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 3 of 3

Client Sample ID: MW-20S

Lab Sample ID: JC28248-7

Matrix:

AQ - Ground Water

Method: Project:

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 09/20/16 Date Received: 09/23/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	70%		39-149%
4165-60-0	Nitrobenzene-d5	70%		32-128%
321-60-8	2-Fluorobiphenyl	69%		35-119%
1718-51-0	Terphenyl d14	66%		10-126%

MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

SGS Accutest LabLink@930192 10:15 12-Oct-2016

Report of Analysis

By

SG

Page 1 of 1

Analytical Batch

E3P2573

Client Sample ID: MW-20S

Lab Sample ID:

JC28248-7

Matrix: Method: Project:

AQ - Ground Water

DF

1

SW846 8270D BY SIM SW846 3510C BMSMC, Building 5 Area, PR

Analyzed

09/28/16

Date Sampled: 09/20/16

Date Received: 09/23/16

Q

Prep Date

09/26/16

Percent Solids: n/a

Prep Batch

OP97271A

Run #2

Run #1

Run #2

Run #1

Initial Volume Final Volume

File ID

3P55958.D

995 ml 1.0 mI

CAS No.	Compound	Result	RL	MDL	Units
91-20-3 123-91-1	Naphthalene 1,4-Dioxane	ND 2.13	0.10 0.10	0.030 0.049	ug/l ug/l
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its
4165-60-0 321-60-8 1718-51-0	Nitrobenzenc-d5 2-Fluorobiphenyl Terphenyl-d14	52% 46% 42%		19-1	25% 27% 19%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Ву

XPL

Analyzed

09/27/16

Prep Date

n/a

Page 1 of 1

Client Sample ID: MW-20S

Lab Sample ID:

JC28248-7

Matrix:

AQ - Ground Water

Method:

SW846-8015C (DAI)

DF

1

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 09/20/16

n/a

Q

Date Received: 09/23/16

Percent Solids: n/a

Prep Batch

Analytical	Batch
Antalyclour	The bott
CCHSSOA	

Run #1 Run #2

Low Molecular Alcohol List

File ID

GH106698.D

Compound	Result	RL	MDL	Units
Ethanol Isobutyl Alcohol Isopropyl Alcohol n-Propyl Alcohol n-Butyl Alcohol sec-Butyl Alcohol Methanol	ND ND ND ND ND ND ND	200 100 100 100 100 100 200	55 36 68 43 87 66 71	ug/l ug/l ug/l ug/l ug/l ug/l ug/l
Surrogate Recoveries	Run# 1	Run# 2	Limi	ta
Hexanol	89%		56-14	15%
	Ethanol Isobutyl Alcohol Isopropyl Alcohol n-Propyl Alcohol n-Butyl Alcohol sec-Butyl Alcohol Methanol Surrogate Recoveries	Ethanol ND Isobutyl Alcohol ND Isopropyl Alcohol ND n-Propyl Alcohol ND n-Butyl Alcohol ND sec-Butyl Alcohol ND Methanol ND Surrogate Recoveries Run# 1	Ethanol ND 200 Isobutyl Alcohol ND 100 Isopropyl Alcohol ND 100 n-Propyl Alcohol ND 100 n-Butyl Alcohol ND 100 sec-Butyl Alcohol ND 100 Methanol ND 200 Surrogate Recoveries Run# 1 Run# 2	Ethanol ND 200 55 Isobutyl Alcohol ND 100 36 Isopropyl Alcohol ND 100 68 n-Propyl Alcohol ND 100 43 n-Butyl Alcohol ND 100 87 sec-Butyl Alcohol ND 100 66 Methanol ND 200 71 Surrogate Recoveries Run#1 Run#2 Limi

MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

SGS Accutest LabLink@930192 10:15 12-Oct-2016

Report of Analysis

Page 1 of 1

Client Sample ID: MW-20S

Lab Sample ID:

JC28248-7

Matrix: Method:

Project:

AQ - Ground Water

SW846 8081B SW846 3510C BMSMC, Building 5 Area, PR Date Sampled: 09/20/16

Date Received: 09/23/16

Percent Solids: n/a

	File ID 1G128046.D	DF 1	10/06/16	By DS	Prep Date 10/06/16	Prep Batch OP97553	Analytical Batch G1G4105
Run #2 b	1G127943.D	1	10/05/16	KD	09/26/16	OP97273	G1G4103

	Initial Volume	Final Volume
Run #1	970 ml	10.0 ml
Run #2	980 ml	10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.010	0.0062	ug/l	
319-84-6	alpha-BHC	ND	0.010	0.0062	ug/I	
319-85-7	beta-BHC	ND	0.010	0.0059	ug/l	
319-86-8	delta-BHC	ND	0.010	0.0047	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0029	ug/l	
5103-71-9	alpha-Chlordane	ND	0.010	0.0048	ug/l	
5103-74-2	gamma-Chlordane	ND	0.010	0.0047	ug/l	
60-57-1	Dieldrin	ND	0.010	0.0037	ug/l	
72-54-8	4,4'-DDD	ND	0.010	0.0039	ug/l	
72-55-9	4,4'-DDE	ND	0.010	0.0064	ug/l	
50-29-3	4,4'-DDT	ND	0.010	0.0051	ug/l	
72-20-8	Endrin	ND	0.010	0.0052	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.010	0.0054	ug/l	
7421-93-4	Endrin aldehyde	ND	0.010	0.0053	ug/l	
53494-70-5	Endrin ketone	ND	0.010	0.0052	ug/l	
959-98-8	Endosulfan-I	ND	0.010	0.0051	ug/l	
33213-65-9	Endosulfan-II	ND	0.010	0.0044	ug/l	
76-44-8	Heptachlor	ND	0.010	0.0039	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.010	0.0067	ug/l	
72-43-5	Methoxychlor	ND	0.021	0.0059	ug/l	
8001-35-2	Toxaphene	ND	0.26	0.19	ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	72%	86%	26-1	32%	
877-09-8	Tetrachloro-m-xylene	74%	82%	26-1	32%	
2051-24-3	Decachlorobiphenyl	67%	80%	10-1	18%	
2051-24-3	Decachlorobiphenyl	68%	72%	10-1	18%	

(a) Re-extracted due to BS outside in house QC limits. Originally prep date was within holding time.

(b) Confirmation run.

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

ACCUTEST			CHAI	N C	FC	CUST	TOE	Y									P/		_(0	F_L i
NJ			2110 TEL, 7.Q-3	29-8200	FAX: 7:		M-3480				4	77	129	237	07	39 ^		JC		
Count / Reporting Information		A 11	Project	nitara	tion	JOHN	<u> </u>	FALL.		12.0	1 36	ri Fibec	ueste	d Anal	yels (DOO TES	T CDDS	sheet)	334	Matrix Codes
Company Name	Project Name:										1	1	l	lì				1 1		
Anderson Mutholiand & Associates Smel Admes	SMSMC 3rd (Quarter Ground	huster Same	tteg 20	16		7 No.	1	at the state		- B								ļ	DW - Drawing Was GW - Ground Was WW - Waser
2780 Westchester Avenue, Suite 417				Billing I	-	m (e asi	net bu	n Beye	ori tea)		42700		l)	1 1	j	SW - Surface West SG - Soil
	City		State		y						크		l	Ιi						SL-Sludge SED-Sedment
Purchase NY 19877 Proof Sensor 8-94	Humacao Prost E			Sirent A	id-sec						- [8		B1808		}	ļ		1 1	- 1	DI- OIL
Terry Taylor	624 2016			j							1 3		<u>B</u>	П						ARL Ar SOL Ditter Sold
Phone # Fax #	Chart Purchase	Circler II		City			ŞL	b		20	Naphthalane		뤃							WP-Wee
914-251-0400	Project Manager										- N 8	9	1 3	l _ i				1 1		ES-Enderard Ster
Sergents (Hernots) Prone 8 N., Rivero JR., Stuart L.LD., Valle, D., Lindelrand	Torry Taylor			-	K							de 82700	꽇	89100				1 1		RS-River Davis TB-Try Berric
A. COMPART SHARE CLUMBER AND	Jany Layer	Ĺ	Cortector				į n			i Bullen	∃ ∄	l ii	1 5	Na W	ĺ					
field Ø / Point of Collection	Michigraphy and a	5	Ylmo	3	Marich .		0 9	201	w i	MEDI	1,4-Dioxane	BVOC	Organo Pesticides	LMA						LAB USÉ ONL
7 17-1R		9-19-6	1514	JUR	GW	60			3		¥	T	V	X			\neg	1	_ -	-
2 8-42D		9-20-16	1343		SIN		3	H	3	╀┼┼	+₩	10	10	5		┝╾┼╴		1-1	\dashv	E98
		0-20-1/-	1573			60	ქ-			+++	+5	10	10	5		┝	+	+ +	\dashv	
	 	4-2076	1501	/VR	QM	6	! "! -	Н-	3	┦┦┦	12	15	I.S.	<i>y</i> -		$\vdash \vdash$	+	1 1	-	5100
4 5-43D		4-70-16	1514	AR.	6N	6	3	Н-	3	\vdash	17	1.7	X	Χ,						V30
5 5-435		9-20-16	1605	NR	6 M	6	3	Ц.	3	Ш	18	1 X	X	X		Ш			_	
6 MW-20D		19-21-16	1317	NR	GW	6	5		3 _	Ш	_IX	14	X	IX.				1 _1	- 1	
7 MW-205		9-21-16	130	NR.	GW	G	3_		3		×	K	4	4		\Box				
															_		$^{+}$		#	
	1000000	C-estate Control	27.00 (0.000)	deXS.	84000	\$13 No.	J V	U E	0.0	in o		17.75	1150	.07		a to-	1.1. AC	- F-17-	. T. S. T. T. S.	William Co.
Tuniquound Total (Suddress dovs)	- And	95430 S 1940	24 - 14	2000	17975	Date	Cuber	tio Pr	O TOTAL	100	94-	6000	1	2720	- 170°	Contribute	rin I fire	tel fruit e	tona AFE	- Centra - 2
Stat. 15 Business Days But. 18 Business Days (by Contract only) 10 Day RUSSH 5 Day RUSSH	Appropriate By (Asset			800	Communic	ant "A" (1 det "B" (1 (Luccul 2+	arel 1) avel 2)			YASP Call YASP Call tale Permi	ingsery B B		Add	to SV	0C re	port 1-	Mathyir	aphtha		
1 Day Embrelancy									_	P#	201			out th	AL A	SESSI	NENT_		_	
2 Day EMERICENCY 1 Lay INSTITUTES CY Employee & Pain TA day available VA Landra						Corner	er er e	Panels	- OC S				-	LABE	L VE	RIFICA	TION_	7.	37	
The Artist Property was Lovered.	- La	mpio Custosly in	et be decur	eriad b		NJ Rota A time a							delive	ry.		14	71X10	STATE OF	144/22	and the state of
	16/700		EX				2		الحز					77.	THE C			12	fly	
3		Measured Styr 3	,				4	Py		,				Outo Tie		- 4		//		
Statement for Date Trees		Section 1 Sec					4(8			- 1	6		_	4-4-			-			43.3.8

@ 3.7.13, 3.8gp

EXECUTIVE NARRATIVE

SDG No:

JC28248

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8270D

Number of Samples:

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY: Seven (7) samples were analyzed for the ABN TCL list following method SW846-8270D; Naphthalene and 1,4-Dioxane were also analyzed by SW846-8270D using the selective ion monitoring (SIM) technique. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: EPA Hazardous Waste Support Section, SOP HW-35A, July 2015 - Revision 0. Semivolatile Data Validation. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings: Major findings:

None

None

Minor findings:

1. Initial and continuing calibration verifications meet the method and guidance document required performance criteria except in the cases described in the Data Review Worksheet. Analytes not meeting the continuing calibration verification method performance criteria and validation guidance document performance criteria qualified as estimated (J) or (UJ) in affected samples.

Analytes not meeting the continuing calibration verification method performance criteria but were within the validation guidance document performance criteria were not qualified...

No closing calibration verification included in data package. No action taken, professional judgment.

Diluted samples analyzed for 1,4-dioxane only. Analytes not meeting the continuing calibration verification method performance criteria and validation guidance document performance criteria were reported from the undiluted run.

- 2. bis(2-Ethylhexyl)phthalate detected in the method blank. No action taken, bis(2-Ethylhexyl)phthalate is common laboratory contaminant and was not detected in any sample from this batch.
- 3. DMCs meet the required criteria in all samples analyzed except for the cases described in the Data Review Worksheet. Non-deuterated surrogates added to the samples were within laboratory recovery limits except for the cases described in the Data Review Worksheet.

Surrogates not recovered in samples JC28248-1; -2; -3; -4; and -5 due to dilution. No action taken.

4. MS/MSD % recoveries and RPD within laboratory control limits except for the cases described the Data Review Worksheet.

MS/MSD % recovery for 1,4-dioxane in samples JC28248-2MS/2MSD and JC28248-3MS/3MSD outside laboratory control limits. No action taken, analyte concentration high compared to amount spiked.

5. Samples JC28248-6 and JC28248-7 sampled on 09/21/16 based on chain-of custody form; recorded as sampled on 09/20/16 on analysis report. Sampling date 09/21/16 used for validation purposes.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

October 15, 2016

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC28248-1

Sample location: BMSMC Building 5 Area

Sampling date: 9/19/2016 Matrix: Groundwater

Analyte Name	Result	Units I	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.2	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.2	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.1	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.2	ug/l	1	-	U	Yes
2,4-Dinitrophenol	10	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.2	ug/l	1	-	U	Yes
2-Methylphenol	2.1	ug/l	1	-	U	Yes
3&4-Methylphenol	2.1	ug/l	1	-	U	Yes
2-Nitrophenol	5.2	ug/l	1	-	U	Yes
4-Nitrophenol	10	ug/l	1	-	U	Yes
Pentachlorophenol	4.2	ug/l	1	-	UJ	Yes
Phenol	2.1	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.2	ug/l	1	-	UJ	Yes
2,4,5-Trichlorophenol	5.2	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.2	ug/l	1	-	U	Yes
Acenaphthene	1.0	ug/l	1	-	U	Yes
Acenaphthylene	1.0	ug/l	1	-	U	Yes
Acetophenone	2.1	ug/l	1	-	U	Yes
Anthracene	0.69	ug/l	1	J	J	Yes
Atrazine	2.1	ug/l	1	-	U	Yes
Benzaldehyde	5.2	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.0	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.0	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.0	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.0	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.0	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	2.1	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.1	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.0	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.1	ug/l	1	-	U	Yes
4-Chloroaniline	5.2	ug/l	1	-	U	Yes
Carbazole	1.0	ug/l	1	-	U	Yes
Caprolactam	2.1	ug/l	1	_	U	Yes
Chrysene	1.0	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.1	ug/l	1	-	U	Yes

bis(2-Chloroethyl)ether	2.1	ug/l	1	-	U	Yes
bis(2-Chloroisopropyl)ether	2.1	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.1	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.0	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	1.0	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.1	ug/l	1	-	U	Yes
1,4-Dioxane	1660	ug/l	50	-	J	Yes
Dibenzo(a,h)anthracene	1.0	ug/l	1	-	U	Yes
Dibenzofuran	5.2	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.1	ug/l	1	-	U	Yes
Di-n-octyl phthalate	2.1	ug/l	1	-	U	Yes
Diethyl phthalate	2.1	ug/l	1	=	U	Yes
Dimethyl phthalate	2.1	ug/l	1	=	U	Yes
bis(2-Ethylhexyl)phthalate	2.1	ug/l	1	=	U	Yes
Fluoranthene	1.0	ug/l	1	-	U	Yes
Fluorene	1.0	ug/l	1	-	U	Yes
Hexachlorobenzene	1.0	ug/l	1	=	U	Yes
Hexachlorobutadiene	1.0	ug/l	1	-	U	Yes
Hexachlorocyclopentadiene	10	ug/l	1	-	U	Yes
Hexachloroethane	2.1	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1	-	U	Yes
Isophorone	2.0	ug/l	1	-	U	Yes
1-Methylnaphthalene	1.0	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.0	ug/l	1	-	U	Yes
2-Nitroaniline	5.2	ug/l	1	-	U	Yes
3-Nitroaniline	5.2	ug/l	1	-	U	Yes
4-Nitroaniline	5.2	ug/l	1	-	U	Yes
Nitrobenzene	2.1	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.1	ug/l	1	-	U	Yes
Nitrosodiphenylamine	0.53	ug/l	1	J	J	Yes
Phenanthrene	1.0	ug/l	1	-	U	Yes
Pyrene	1.0	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.1	ug/l	1	-	U	Yes
METHOD:	8270D (SII	M)				
Naphthalene	0.10	ug/l	1	-	U	Yes

Sample ID: JC28248-2

Sample location: BMSMC Building 5 Area

Sampling date: 9/20/2016

Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.0	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.0	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.0	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.0	ug/l	1	-	U	Yes
2,4-Dinitrophenol	10	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.0	ug/l	1	-	U	Yes
2-Methylphenol	2.0	ug/l	1	-	U	Yes
3&4-Methylphenol	2.0	ug/l	1	-	U	Yes
2-Nitrophenol	5.0	ug/l	1	-	U	Yes
4-Nitrophenol	10	ug/l	1	-	U	Yes
Pentachlorophenol	4.0	ug/l	1	-	U	Yes
Phenol	2.0	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.0	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.0	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.0	ug/l	1	-	U	Yes
Acenaphthene	1.0	ug/l	1	-	U	Yes
Acenaphthylene	1.0	ug/l	1	-	U	Yes
Acetophenone	2.0	ug/l	1	-	U	Yes
Anthracene	1.0	ug/l	1	-	U	Yes
Atrazine	2.0	ug/l	1	-	U	Yes
Benzaldehyde	5.0	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.0	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.0	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.0	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.0	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.0	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	2.0	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.0	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.0	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.0	ug/l	1	-	U	Yes
4-Chloroaniline	5.0	ug/l	1	-	U	Yes
Carbazole	1.0	ug/l	1	-	U	Yes
Caprolactam	2.0	ug/l	1	-	U	Yes

Chrysene	1.0	ug/l	1	-	U	Yes			
bis(2-Chloroethoxy)methane	2.0	ug/l	1	-	U	Yes			
bis(2-Chloroethyl)ether	2.0	ug/l	1	-	U	Yes			
bis(2-Chloroisopropyl)ether	2.0	ug/l	1	-	U	Yes			
4-Chlorophenyl phenyl ether	2.0	ug/l	1	-	U	Yes			
2,4-Dinitrotoluene	1.0	ug/l	1	-	U	Yes			
2,6-Dinitrotoluene	1.0	ug/l	1	=	U	Yes			
3,3'-Dichlorobenzidine	2.0	ug/l	1	-	U	Yes			
1,4-Dioxane	3130	ug/l	200	-	-	Yes			
Dibenzo(a,h)anthracene	1.0	ug/l	1	-	U	Yes			
Dibenzofuran	5.0	ug/l	1	-	U	Yes			
Di-n-butyl phthalate	2.0	ug/l	1	-	U	Yes			
Di-n-octyl phthalate	2.0	ug/l	1	-	U	Yes			
Diethyl phthalate	2.0	ug/l	1	-	U	Yes			
Dimethyl phthalate	2.0	ug/l	1	-	U	Yes			
bis(2-Ethylhexyl)phthalate	2.0	ug/l	1	-	UJ	Yes			
Fluoranthene	1.0	ug/l	1	-	U	Yes			
Fluorene	1.0	ug/l	1	-	U	Yes			
Hexachlorobenzene	1.0	ug/l	1	-	U	Yes			
Hexachlorobutadiene	1.0	ug/l	1	-	U	Yes			
Hexachlorocyclopentadiene	10	ug/l	1	-	U	Yes			
Hexachloroethane	2.0	ug/l	1	-	U	Yes			
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1	-	U	Yes			
Isophorone	2.0	ug/l	1	-	U	Yes			
1-Methylnaphthalene	1.0	ug/l	1	-	U	Yes			
2-Methylnaphthalene	1.0	ug/l	1	-	U	Yes			
2-Nitroaniline	5.0	ug/l	1	-	U	Yes			
3-Nitroaniline	5.0	ug/l	1	-	U	Yes			
4-Nitroaniline	5.0	ug/l	1	-	U	Yes			
Nitrobenzene	2.0	ug/l	1	-	U	Yes			
N-Nitroso-di-n-propylamine	2.0	ug/l	1	-	U	Yes			
Nitrosodiphenylamine	5.0	ug/l	1	-	U	Yes			
Phenanthrene	1.0	ug/l	1	-	U	Yes			
Pyrene	1.0	ug/l	J	-	U	Yes			
1,2,4,5-Tetrachlorobenzene	2.0	ug/l	1	-	U	Yes			
METHOD: 8270D (SIM)									

0.10

ug/l 1

Yes

Naphthalene

Sample ID: JC28248-3

Sample location: BMSMC Building 5 Area

Sampling date: 9/20/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.1	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.1	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.0	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.1	ug/l	1	-	U	Yes
2,4-Dinitrophenol	10	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.1	ug/l	1	-	U	Yes
2-Methylphenol	2.0	ug/l	1	-	U	Yes
3&4-Methylphenol	2.0	ug/l	1	-	U	Yes
2-Nitrophenol	5.1	ug/l	1	-	U	Yes
4-Nitrophenol	10	ug/l	1	-	U	Yes
Pentachlorophenol	4.0	ug/l	1	-	U	Yes
Phenol	2.0	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.1	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.1	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.1	ug/l	1	-	U	Yes
Acenaphthene	1.0	ug/l	1	-	U	Yes
Acenaphthylene	1.0	ug/l	1	-	U	Yes
Acetophenone	2.0	ug/l	1	-	U	Yes
Anthracene	1.0	ug/l	1	-	U	Yes
Atrazine	2.0	ug/l	1	-	U	Yes
Benzaldehyde	5.1	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.0	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.0	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.0	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.0	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.0	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	2.0	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.0	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.0	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.0	ug/l	1	-	U	Yes
4-Chloroaniline	5.1	ug/l	1	-	U	Yes
Carbazole	1.0	ug/l	1	-	U	Yes

Caprolactam	2.0	ug/l	1	-	U	Yes
Chrysene	1.0	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.0	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	2.0	ug/l	1	-	U	Yes
bis (2-Chlorois opropyl) ether	2.0	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.0	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.0	ug/l	1	-	UJ	Yes
2,6-Dinitrotoluene	1.0	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.0	ug/l	1	-	U	Yes
1,4-Dioxane	3680	ug/l	100	=	=	Yes
Dibenzo(a,h)anthracene	1.0	ug/l	1	=	U	Yes
Dibenzofuran	5.1	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.0	ug/l	1	=	UJ	Yes
Di-n-octyl phthalate	2.0	ug/l	1	-	U	Yes
Diethyl phthalate	2.0	ug/l	1	=	UJ	Yes
Dimethyl phthalate	2.0	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.0	ug/l	1	-	UJ	Yes
Fluoranthene	1.0	ug/l	1	-	U	Yes
Fluorene	1.0	ug/l	1	-	U	Yes
Hexachlorobenzene	1.0	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.0	ug/l	1	=	U	Yes
Hexachlorocyclopentadiene	10	ug/l	1	=	U	Yes
Hexachloroethane	2.0	ug/l	1	=	U	Yes
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1	=	U	Yes
Isophorone	2.0	ug/l	1	-	U	Yes
1-Methylnaphthalene	1.0	ug/l	1	=	U	Yes
2-Methylnaphthalene	1.0	ug/l	1	-	U	Yes
2-Nitroaniline	5.1	ug/l	1	=	UJ	Yes
3-Nitroaniline	5.1	ug/l	1	-	U	Yes
4-Nitroaniline	5.1	ug/l	1	=	U	Yes
Nitrobenzene	2.0	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.0	ug/l	1	=	U	Yes
Nitrosodiphenylamine	5.1	ug/l	1	-	U	Yes
Phenanthrene	1.0	ug/l	1	-	U	Yes
Pyrene	1.0	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.0	ug/l	1	-	U	Yes

METHOD: 8270D (SIM)

Sample ID: JC28248-4

Sample location: BMSMC Building 5 Area

Sampling date: 9/20/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.0	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.0	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.0	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.0	ug/l	1	-	U	Yes
2,4-Dinitrophenol	10	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.0	ug/l	1	-	U	Yes
2-Methylphenol	2.0	ug/l	1	-	U	Yes
3&4-Methylphenol	2.0	ug/l	1	-	U	Yes
2-Nitrophenol	5.0	ug/l	1	-	U	Yes
4-Nitrophenol	10	ug/l	1	-	U	Yes
Pentachlorophenol	4.0	ug/l	1	-	U	Yes
Phenol	2.0	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.0	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.0	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.0	ug/l	1	-	U	Yes
Acenaphthene	1.0	ug/l	1	-	U	Yes
Acenaphthylene	1.0	ug/l	1	-	U	Yes
Acetophenone	2.0	ug/l	1	-	U	Yes
Anthracene	1.0	ug/l	1	-	-	Yes
Atrazine	2.0	ug/l	1	-	U	Yes
Benzaldehyde	5.0	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.0	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.0	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.0	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.0	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.0	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	2.0	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.0	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.0	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.0	ug/l	1	-	U	Yes
4-Chloroaniline	5.0	ug/l	1	-	U	Yes

Carbazole	1.0	ug/l	1	-	U	Yes
Caprolactam	2.0	ug/l	1	-	U	Yes
Chrysene	1.0	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.0	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	2.0	ug/l	1	-	U	Yes
bis(2-Chloroisopropyl)ether	2.0	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.0	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.0	ug/l	1	-	UJ	Yes
2,6-Dinitrotoluene	1.0	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.0	ug/l	1	-	U	Yes
1,4-Dioxane	4270	ug/l	100	-	-	Yes
Dibenzo(a,h)anthracene	1.0	ug/l	1	-	U	Yes
Dibenzofuran	5.0	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.0	ug/l	1	-	UJ	Yes
Di-n-octyl phthalate	2.0	ug/l	1	-	U	Yes
Diethyl phthalate	2.0	ug/l	1	-	UJ	Yes
Dimethyl phthalate	2.0	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.0	ug/l	1	-	UJ	Yes
Fluoranthene	1.0	ug/l	1	-	U	Yes
Fluorene	1.0	ug/l	1	-	U	Yes
Hexachlorobenzene	1.0	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.0	ug/l	1	-	U	Yes
Hexachlorocyclopentadiene	10	ug/l	1	-	U	Yes
Hexachloroethane	2.0	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1	-	U	Yes
Isophorone	2.0	ug/l	1	-	U	Yes
1-Methylnaphthalene	1.0	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.0	ug/l	1	-	U	Yes
2-Nitroaniline	5.0	ug/l	1	-	UJ	Yes
3-Nitroaniline	5.0	ug/l	1	-	U	Yes
4-Nitroaniline	5.0	ug/l	1	-	U	Yes
Nitrobenzene	2.0	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.0	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.0	ug/l	1	-	U	Yes
Phenanthrene	1.0	ug/l	1	-	U	Yes
Pyrene	1.0	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.0	ug/l	1	-	U	Yes
METHOD	02705 /611	\ 4 \				
	8270D (SII		1		11	Voc
Naphthalene	0.10	ug/l	1	-	U	Yes

Sample ID: JC28248-5

Sample location: BMSMC Building 5 Area

Sampling date: 9/20/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.0	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.0	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.0	ug/l	1	=	U	Yes
2,4-Dimethylphenol	5.0	ug/l	1	-	U	Yes
2,4-Dinitrophenol	10	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.0	ug/l	1	-	U	Yes
2-Methylphenol	2.0	ug/l	1	-	U	Yes
3&4-Methylphenol	1.1	ug/l	1	-	U	Yes
2-Nitrophenol	5.0	ug/l	1	-	U	Yes
4-Nitrophenol	10	ug/l	1	-	U	Yes
Pentachlorophenol	4.0	ug/l	1	-	U	Yes
Phenol	2.0	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.0	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.0	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.0	ug/l	1	-	U	Yes
Acenaphthene	1.0	ug/l	1	-	U	Yes
Acenaphthylene	1.0	ug/l	1	-	U	Yes
Acetophenone	2.0	ug/l	1	-	U	Yes
Anthracene	1.4	ug/l	1	-	-	Yes
Atrazine	2.0	ug/l	1	-	U	Yes
Benzaldehyde	5.0	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.0	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.0	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.0	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.0	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.0	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	2.0	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.0	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.0	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.0	ug/l	1	-	U	Yes
4-Chloroaniline	5.0	ug/l	1	-	U	Yes
Carbazole	1.0	ug/l	1	-	U	Yes

Caprolactam	2.0	ug/l	1	-	U	Yes
Chrysene	1.0	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.0	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	2.0	ug/l	1	-	U	Yes
bis(2-Chloroisopropyl)ether	2.0	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.0	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.0	ug/l	1	-	UJ	Yes
2,6-Dinitrotoluene	1.0	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.0	ug/l	1	-	U	Yes
1,4-Dioxane	5060	ug/l	100	-	U	Yes
Dibenzo(a,h)anthracene	1.0	ug/l	1	-	U	Yes
Dibenzofuran	5.0	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.0	ug/l	1	-	UJ	Yes
Di-n-octyl phthalate	2.0	ug/l	1	-	U	Yes
Diethyl phthalate	2.0	ug/l	1	-	UJ	Yes
Dimethyl phthalate	2.0	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.0	ug/l	1	-	UJ	Yes
Fluoranthene	1.0	ug/l	1	-	U	Yes
Fluorene	1.0	ug/l	1	-	U	Yes
Hexachlorobenzene	1.0	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.0	ug/l	1	-	U	Yes
Hexachlorocyclopentadiene	10	ug/l	1	-	U	Yes
Hexachloroethane	2.0	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1	-	U	Yes
Isophorone	2.0	ug/l	1	-	U	Yes
1-Methylnaphthalene	1.0	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.0	ug/l	1	-	U	Yes
2-Nitroaniline	5.0	ug/l	1	-	UJ	Yes
3-Nitroaniline	5.0	ug/l	1	-	U	Yes
4-Nitroaniline	5.0	ug/l	1	-	U	Yes
Nitrobenzene	2.0	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.0	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.0	ug/l	1	-	U	Yes
Phenanthrene	1.0	ug/l	1	-	U	Yes
Pyrene	1.0	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.0	ug/l	1	-	U	Yes
METHOD.	9270D (SII	۸۸۱				
METHOD: Naphthalene	0.10	ug/l	1	_	U	Yes
Haphthaiche	0.10	чь/ ¹	±		3	103

Sample ID: JC28248-6

Sample location: BMSMC Building 5 Area

Sampling date: 9/21/2016

Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.0	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.0	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.0	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.0	ug/l	1	-	U	Yes
2,4-Dinitrophenol	10	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.0	ug/l	1	-	U	Yes
2-Methylphenol	2.0	ug/l	1	-	U	Yes
3&4-Methylphenol	1.1	ug/l	1	-	U	Yes
2-Nitrophenol	5.0	ug/l	1	-	U	Yes
4-Nitrophenol	10	ug/l	1	-	U	Yes
Pentachlorophenol	4.0	ug/l	1	-	U	Yes
Phenol	2.0	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.0	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.0	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.0	ug/l	1	-	U	Yes
Acenaphthene	1.0	ug/l	1	-	U	Yes
Acenaphthylene	1.0	ug/l	1	-	U	Yes
Acetophenone	2.0	ug/l	1	-	U	Yes
Anthracene	1.4	ug/l	1	-	U	Yes
Atrazine	2.0	ug/l	1	-	U	Yes
Benzaldehyde	5.0	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.0	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.0	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.0	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.0	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.0	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	2.0	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.0	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.0	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.0	ug/l	1	-	U	Yes
4-Chloroaniline	5.0	ug/l	1	-	U	Yes
Carbazole	1.0	ug/l	1	-	U	Yes

Caprolactam	2.0	ug/l	1	-	U	Yes
Chrysene	1.0	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.0	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	2.0	ug/l	1	-	U	Yes
bis (2-Chlorois opropyl) ether	2.0	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.0	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.0	ug/l	1	=	U	Yes
2,6-Dinitrotoluene	1.0	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.0	ug/l	1	=	U	Yes
1,4-Dioxane	10.2	ug/l	1	-	-	Yes
Dibenzo(a,h)anthracene	1.0	ug/l	1	-	U	Yes
Dibenzofuran	5.0	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.0	ug/l	1	-	UJ	Yes
Di-n-octyl phthalate	2.0	ug/l	1	-	U	Yes
Diethyl phthalate	2.0	ug/l	1	-	U	Yes
Dimethyl phthalate	2.0	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.0	ug/l	1	-	UJ	Yes
Fluoranthene	1.0	ug/l	1	-	U	Yes
Fluorene	1.0	ug/l	1	-	U	Yes
Hexachlorobenzene	1.0	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.0	ug/l	1	-	U	Yes
Hexachlorocyclopentadiene	10	ug/l	1	-	U	Yes
Hexachloroethane	2.0	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1	-	U	Yes
Isophorone	2.0	ug/l	1	-	U	Yes
1-Methylnaphthalene	1.0	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.0	ug/l	1	-	U	Yes
2-Nitroaniline	5.0	ug/l	1	-	U	Yes
3-Nitroaniline	5.0	ug/l	1	-	U	Yes
4-Nitroaniline	5.0	ug/l	1	-	U	Yes
Nitrobenzene	2.0	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.0	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.0	ug/l	1	-	U	Yes
Phenanthrene	1.0	ug/l	1	-	U	Yes
Pyrene	1.0	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.0	ug/l	1	-	U	Yes
METHOD:	8270D (SII	M)				
Naphthalene	0.10	ug/l	1	-	U	Yes

Sample ID: JC28248-7

Sample location: BMSMC Building 5 Area

Sampling date: 9/21/2016

Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.0	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.0	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.0	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.0	ug/l	1	-	U	Yes
2,4-Dinitrophenol	10	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.0	ug/l	1	-	U	Yes
2-Methylphenol	2.0	ug/l	1	-	U	Yes
3&4-Methylphenol	1.1	ug/l	1	-	U	Yes
2-Nitrophenol	5.0	ug/l	1	-	U	Yes
4-Nitrophenol	10	ug/l	1	-	U	Yes
Pentachlorophenol	4.0	ug/l	1	-	U	Yes
Phenol	2.0	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.0	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.0	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.0	ug/l	1	-	U	Yes
Acenaphthene	1.0	ug/l	1	-	U	Yes
Acenaphthylene	1.0	ug/l	1	-	U	Yes
Acetophenone	2.0	ug/l	1	-	U	Yes
Anthracene	1.4	ug/l	1	-	U	Yes
Atrazine	2.0	ug/l	1	-	U	Yes
Benzaldehyde	5.0	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.0	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.0	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.0	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.0	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.0	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	2.0	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.0	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.0	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.0	ug/l	1	-	U	Yes
4-Chloroaniline	5.0	ug/l	1	-	U	Yes
Carbazole	1.0	ug/l	1	-	U	Yes

Caprolactam	2.0	ug/l	1	_	U	Yes
Chrysene	1.0	ug/l	1	=	U	Yes
bis(2-Chloroethoxy)methane	2.0	ug/l	1	=	U	Yes
bis(2-Chloroethyl)ether	2.0	ug/l	1	-	U	Yes
bis(2-Chloroisopropyl)ether	2.0	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.0	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.0	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	1.0	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.0	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	1.0	ug/l	1	-	U	Yes
Dibenzofuran	5.0	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.0	ug/l	1	-	UJ	Yes
Di-n-octyl phthalate	2.0	ug/l	1	-	U	Yes
Diethyl phthalate	2.0	ug/l	1	-	U	Yes
Dimethyl phthalate	2.0	ug/l	1	-	U	Yes
bis (2-Ethylhexyl) phthalate	2.0	ug/l	1	-	UJ	Yes
Fluoranthene	1.0	ug/l	1	-	U	Yes
Fluorene	1.0	ug/l	1	-	U	Yes
Hexachlorobenzene	1.0	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.0	ug/l	1	-	U	Yes
Hexachlorocyclopentadiene	10	ug/l	1	-	U	Yes
Hexachloroethane	2.0	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1	-	U	Yes
Isophorone	2.0	ug/l	1	-	U	Yes
1-Methylnaphthalene	1.0	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.0	ug/l	1	-	U	Yes
2-Nitroaniline	5.0	ug/l	1	-	U	Yes
3-Nitroaniline	5.0	ug/l	1	-	U	Yes
4-Nitroaniline	5.0	ug/l	1	-	U	Yes
Nitrobenzene	2.0	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.0	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.0	ug/l	1	-	U	Yes
Phenanthrene	1.0	ug/l	1	-	U	Yes
Pyrene	1.0	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.0	ug/l	1	-	U	Yes
METHOD: 8	•					
Naphthalene	0.10	ug/l	1	-	U	Yes
1,4-Dioxane	2.13	ug/l	1	-	-	Yes

	Project Number:_JC28248
REVIEW OF SEMIVOLATILE	DRGANIC PACKAGE
The following guidelines for evaluating volatile on validation actions. This document will assist the make more informed decision and in better serving results were assessed according to USEPA dar following order of precedence: EPA Hazardous V 2015—Revision 0. Semivolatile Data Validation. The Q on the data review worksheets are from the prim noted.	eviewer in using professional judgment to g the needs of the data users. The sample ta validation guidance documents in the Vaste Support Section, SOP HW-35A, July C criteria and data validation actions listed
The hardcopied (laboratory name) _Accutest reviewed and the quality control and performance daincluded:	data package received has been ta summarized. The data review for SVOCs
Lab. Project/SDG No.:JC28248	Sample matrix:Groundwater
Trip blank No.:	
X Data CompletenessX Holding TimesX GC/MS TuningX Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate	X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits
_Overall Comments:_SVOCs_TCL_special_list_analyzed_Naphthalene_and_1,4-Dioxane_analyzed_by_method_9_samples_JC28248-6_and_JC28248_sampled_on_09/20/16_on_analysis_repor_validation_purposes	SW846-8270D_(SIM)
Definition of Qualifiers:	
J- Estimated results U- R- Rejected data UJ- Reviewer:	Compound not detected Estimated nondetect

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
y - 1,500000 - 12		
	- 1 W	20,0000 000
	100 Hz (m) 144 Hz	
<u> </u>		

All criteria were metX
Criteria were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED/ANALYZED	рН	ACTION
		 alyzed within method recon lescribed in this document.	nmen	ded holding time. Samples properly
Cooler tempera	ture (Criteria: 4 -	+ 2 °C):5.2°C		

Actions

Results will be qualified based on the criteria of the following Table:

Table 1. Holding Time Actions for Semivolatile Analyses

			Action		
Matrix Preserve		Associated Associ		Non-Detected Associated Compounds	
No		≤7 days (for extraction) ≤40 days (for analysis)	Use professi	onal judgment	
	No	> 7 days (for entraction) > 40 days (for analysis)	J	Use professional judgment	
Aqueous	Yes	≤ 7 days (for extraction) ≤ 40 days (for analysis)	No qua	lilication	
	Yes	> 7 days (for extraction) > 40 days (for analysis)	J	UJ	
	Yes/No	Grossly Exceeded	J	UJ or R	
	No	≤ 14 days (for extraction) ≤ 40 days (for analysis)	Use profession	onal judgment	
Non-Aqueous	No	> 14 days (for extraction) > 40 days (for analysis)	J	Use professional judgment	
	Yes	≤ 14 days (for extraction) ≤ 40 days (for analysis)	No qua	ilication	
I	Yes	> 14 days (for extraction) > 40 days (for analysis)	J	UJ	
	Yes/No	Grossly Exceeded	J	UJ or R	

All	criteria were met _	_X
Criteria were	not met see below	

GC/MS TUNING

The assessment of the tuning	results is to determine	e if the sample instru	imentation is within	the standard
tuning QC limits				

- _X__ The DFTPP performance results were reviewed and found to be within the specified criteria.
- _X__ DFTPP tuning was performed for every 12 hours of sample analysis.

If no, use professional judgment to determine whether the associated data should be accepted, qualified or rejected.

Notes: These requirements do not apply when samples are analyzed by the Selected Ion Monitoring (SIM) technique.

All mass spectrometer conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortion are unacceptable

Notes: No data should be qualified based of DFTPP failure.

The requirement to analyze the instrument performance check solution is optional when analysis of PAHs/pentachlorophenol is to be performed by the SIM technique.

List	the	samples	affected:

Actions:

- 1. If sample are analyzed without a preceding valid instrument performance check or are analyzed 12 hours after the Instrument Performance Check, qualify all data in those samples as unusable (R).
- 2. If ion abundance criteria are not met, use professional judgment to determine to what extent the data may be utilized.
- 3. State in the Data Review Narrative, decisions to use analytical data associated with DFTPP instrument performance checks not meeting the contract requirements.
- 4. Use professional judgment to determine if associated data should be qualified based on the spectrum of the mass calibration compounds.

All criteria were metX
Criteria were not met
and/or see below

INITIAL CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	
Instrument ID numbers:_	GCMS3P
Matrix/Level:	Aqueous/low
Date of initial calibration:	
Instrument ID numbers:_	GCMS6P
Matrix/Level:	Aqueous/iow
Date of initial calibration:	
Instrument ID numbers:_	GCMSP
Matrix/Level:	Aqueous/low

DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
Initial a	and initi	al calib		ts the method and guidance nance criteria.	validation document

Note:

Actions:

Qualify the initial calibration analytes listed in Table 2 using the following criteria:

Table 3. Initial Calibration Actions for Semivolatile Analysis

Criteria	Action		
Criteria	Detect	Non-detect	
Initial Calibration not performed at specified frequency and sequence	Use professional judgment R	Use professional judgment R	
Initial Calibration not performed at the specified concentrations	J	Ú	
RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment J+ or R	R	
RRF > Minimum RRF in Table 2 for target analyte	No qualification	No qualification	
%RSD > Maximum %RSD in Table 2 for target analyte	j	Use professional judgment	
%RSD < Maximum %RSD in Table 2 for target analyte	No qualification	No qualification	

Initial Calibration

Table 2. RRF, %RSD, and %D Acceptance Criteria in Initial Calibration and CCV for Semivolatile Analysis

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D¹
1,4-Dioxane	0.010	40.0	-40.0	-50.0
Benzaldehyde	0.100	40.0	-40,0	- 50.0
Phenol	0.080	20.0	-20.0	- 25.0
Bis(2-chloroethyl)ether	0.100	20.0	-20.0	-25.0
2-Chlorophenol	0.200	20.0	-20.0	-25.0
2-Methylphenol	0.010	20.0	= 20.0	= 25.0
3-Methylphenol	0.010	20.0	= 20.0	- 25.0
2,2'-Oxybis-(1-chloropropane)	0.010	20.0	= 25.0	= 50.0
Acetophenone	0.060	20.0	= 20.0	-25.0
4-Methylphenol	0.010	20.0	- 20.0	-25.0
N-Nitroso-di-n-propytamine	0.080	20.0	= 25.0	=25.0
Hexachloroethane	0.100	20.0	-20.0	-25.0
Nitrobenzene	0.090	20.0	- 20.0	= 25.0
Isophorone	0.100	20.0	-20.0	-25.0
2-Nitrophenol	0.060	20.0	-20.0	-25.0
2,4-Dimethylphenol	0.050	20.0	= 25.0	- 50.0
Bis(2-chloroethoxy)methane	0.080	20.0	-20.0	-25.0
2,4-Dichlorophenol	0.060	20.0	= 20.0	= 25,0
Naphthalene	0.200	20.0	= 20.0	= 25.0
4-Chloroaniline	0.010	40.0	-40.0	-50.0
llexachlorobutadiene	0.040	20.0	= 20.0	- 25.0
Caprolactam	0.010	40.0	= 30.0	± 50.0
4-Chloro-3-methylphenol	0,040	20.0	-20.0	= 25.0
2-Methylnaphthalene	0.100	20,0	-20.0	-25.0
lexachlorocyclopentadiene	0.010	40,0	= 40.0	- 50.0
2,4,6-Trichtorophenol	0.090	20.0	- 20.0	-25.0
2,4,5-Trichlorophenol	0.100	20,0	-20.0	=25.0
1,1'-Biphenyl	0.200	20.0	= 20.0	- 25.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D ¹
2-Chloronaphthalene	0.300	20.0	-20.0	-25.0
2-Nitroaniline	0.060	20.0	-25.0	- 25.0
Dimethylphthalate	0.300	20.0	- 25.0	-25.0
2,6-Dinitrotoluene	0.080	20.0	-20.0	-25.0
Acenaphthylene	0.400	20.0	-20.0	-25.0
3-Nitroaniline	0,010	20.0	-25.0	= 50.0
Acenaphthene	0.200	20.0	-20.0	-25.0
2,4-Dinitrophenol	0.010	40,0	-50.0	-50.0
4-Nitrophenol	0.010	40.0	~ 40.0	= 50.0
Dibenzofuran	0.300	20,0	- 20.0	±25.0
2,4-Dinitrotoluene	0.070	20.0	-20.0	-25.0
Diethylphthalate	0.300	20.0	= 20.0	=25.0
1,2,4,5-Tetrachlorobenzene	0.100	20.0	- 20.0	-25.0
4-Chlorophenyl-phenylether	0.100	20.0	-20.0	-25.0
Fluorene	0.200	20.0	= 20.0	- 25.0
4-Nitroaniline	0.010	40.0	- 40.0	-50.0
4,6-Dinitro-2-methylphenol	0.010	40.0	-30.0	-50.0
4-Bromophenyl-phenyl ether	0.070	20.0	= 20.0	=25.0
N-Nitrosodiphenylamine	0.100	20.0	-20.0	- 25.0
Hexachlorobenzene	0.050	20,0	-20.0	-25.0
Atrazine	0.010	40.0	-25.0	-50.0
Pentachlorophenol	0.010	40.0	-40.0	-50.0
Phenanthrene	0.200	20.0	-20.0	-25.0
Anthracene	0.200	20.0	- 20.0	-25.0
Carbazole	0.050	20,0	-20.0	25.0
Di-n-butylphthalate	0.500	20,0	-20.0	-25.0
Fluoranthene	0.100	20.0	-20.0	-25.0
Pyrene	0.400	20.0	- 25.0	-50.0
Butylbenzylphthalate	0.100	20.0	-25.0	-50.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D¹
3,3'-Dichlorobenzidine	0.010	40.0	-40.0	- 50.0
Benzo(a)anthracene	0.300	20.0	-20.0	-25.0
Chrysene	0,200	20.0	-20.0	-50.0
Bis(2-ethylhexyl) phthalate	0.200	20.0	-25.0	-50.0
Di-n-octylphthalate	0.010	40.0	-40.0	- 50.0
Benzo(b)/Iuoranthene	0.010	20.0	-25.0	-50.0
Benzo(k)fluoranthene	0.010	20.0	-25.0	- 50.0
Benzo(a)pyrene	0.010	20.0	-20.0	- 50.0
Indeno(1,2,3-cd)pyrene	0.010	20.0	-25.0	- 50.0
Dibenzo(a,h)anthracene	0.010	20.0	= 25.0	- 50.0
Benzo(g,h,i)perylene	0.010	20.0	- 30.0	- 50.0
2,3,4,6-Tetrachlorophenol	0.040	20.0	-20.0	- 50.0
Naphthalene	0.600	20.0	-25.0	- 25.0
2-Methylnaphthalene	0.300	20.0	- 20.0	-25.0
Acenaphthylene	0.900	20.0	- 20.0	- 25.0
Acenaphthene	0.500	20.0	-20.0	-25.0
Fluorene	0.700	20.0	- 25.0	- 50.0
Phenanthrene	0.300	20.0	- 25.0	- 50.0
Anthracene	0.400	20.0	= 25.0	= 50.0
Fluoranthene	0.400	20.0	-25.0	-50.0
Pyrene	0.500	20.0	± 30.0	± 50.0
Benzo(a)anthracene	0.400	20.0	-25.0	- 50.0
Chyrsene	0,400	20,0	-25.0	-50.0
Benzo(b)fluoranthene	0.100	20.0	-30.0	- 50.0
Benzo(k)Huoranthene	0.100	20.0	= 30.0	= 50.0
Benzo(a)pyrene	0.100	20.0	-25.0	- 50.0
ndeno(1,2,3-cd)pyrene	0.100	20.0	= 40.0	- 50.0
Dibenzo(a,h)anthracene	0.010	25.0	-40.0	- 50,0
Benzo(g,h,i)perylene	0.020	25.0	-40.0	= 50.0

Pentachlorophenol	0.010	40,0	-50,0	-50.0	
Deuterated Monitoring Compounds					

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Closing Maximum %D
1,4-Dioxane-d _x	0,010	20.0	-25.0	±50.0
Phenol-d ₅	0.010	20.0	= 25.0	= 25.0
Bis-(2-chloroethyl)ether-d ₈	0.100	20.0	-20.0	-25.0
2-Chlorophenol-di	0,200	20.0	-20.0	- 25.0
4-Methylphenol-d _x	0.010	20.0	-20.0	- 25.0
4-Chloroaniline-d ₁	0.010	40.0	- 40.0	- 50.0
Nitrobenzene-d ₅	0.050	20.0	- 20.0	-25.0
2-Nitrophenol-d ₄	0.050	20.0	-20.0	- 25.0
2,4-Dichlorophenol-d:	0.060	20.0	-20.0	-25.0
Dimethylphthalate-d ₆	0,300	20.0	-20.0	-25.0
Acenaphthylene-d ₈	0.400	20.0	-20.0	-25.0
4-Nitrophenol-d ₄	0.010	40,0	-40.0	- 50.0
Fluorene-d ₁₀	0,100	20.0	= 20.0	- 25.0
4,6-Dinitro-2-methylphenol-d2	0.010	40.0	-30.0	- 50.0
Anthracene-d ₁₀	0.300	20.0	-20.0	-25.0
Pyrene-d ₁₀	0.300	20.0	- 25.0	50.0
Benzo(a)pyrene-d ₁₂	0.010	20.0	- 20.0	- 50.0
Fluoranthene-d ₁₀ (SIM)	0.400	20,0	-25.0	-50.0
2-Methylnaphthalene-d ₁₀ (SIM)	0,300	20.0	-20.0	- 25.0

If a closing CCV is acting as an opening CCV, all target analytes must meet the requirements for an opening CCV.

Note: If analysis by SIM technique is requested for PAH/pentachlorophenols, calibration standards analyzed at 0.10, 0.20, 0.40, 0.80, and 1.0 ng/uL for each target compound of interest and the associated DMCs. Pentachlorophenol will require only a four point initial calibration at 0.20, 0.40, 0.80, and 1.0 ng/uL.

All criteria were met _	
Criteria were not met	
and/or see below	_X

CONTINUING CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration verification (ICV):09/15/16	Date of initial calibration:09/14-15/16_(SIM)	
Date of continuing calibration verification (CCV):_09/26/16;_09/28/16	Date of initial calibration verification (ICV): 09/15/16	_
Date of closing CCV:	Date of continuing calibration verification (CCV): 09/26/16; 09/28/16	
Matrix/Level:	Date of closing CCV:	
Matrix/Level:	11150 different its fidinibers	
Date of initial calibration verification (ICV):_08/23/16	Matrix/Level:Aqueous/low	
Date of initial calibration verification (ICV):_08/23/16	Date of initial calibration:08/23/16_(Scan)	
Date of continuing calibration verification (CCV):09/28/16;_09/29/16;_09/30/16	Date of initial calibration verification (ICV):_08/23/16	_
Matrix/Level:	Date of continuing calibration verification (CCV):09/28/16;_09/29/16;_09/30/16	
Matrix/Level:	Date of closing CCV:	
Matrix/Level:Aqueous/low	Instrument ID numbers:GCM6SP	
Date of Initial Calibration verification (ICV):_09/26-27/16	Matrix/Level:Aqueous/low	
Date of Initial Calibration verification (ICV):_09/26-27/16	Date of initial calibration:09/26/16_(Scan)	
Date of continuing calibration verification (CCV):_09/27/16;_09/30/16 Date of closing CCV: Instrument ID numbers:GCM6P	Date of initial calibration verification (ICV):_09/26-27/16	
Date of closing CCV:GCM6P	Date of continuing calibration verification (CCV):_09/27/16;_09/30/16	
Instrument ID numbers:GCMbP	Date of closing CCV:	
Matrix/Level:Aqueous/low	Instrument ID numbers:GCM6P	
	Matrix/Level:Aqueous/low	_

DATE	LAB FILE	CRITERIA OUT	COMPOUND	SAMPLES
	ID#	RFs, %RSD, <u>%D</u> , r		AFFECTED
GCMS3P	-SIM			
09/26/16	cc2561-1.0	-21.3	1,4-dioxane	JC28248-1
GCMS6P		-		
09/28/16	cc1353-25	20.6	2,4-nitrophenol*	JC28248-2
		-20.8	4-nitrophenol*	1
		-21.2	bis(2-ethylhexyl)phthalate	_
		-23.5	di-n-octylphthalate*	
	cc1354-25	30.1	Benzaldehyde*	1
09/29/16	cc1353-25	-21.9	4-nitrophenoi*	JC28248-3 to -7
		-25.6	di-n-butylphthalate	
		-22.5	bis(2-ethylhexyl)phthalate	
		-24.0	di-n-octylphthalate*	
	cc1354-25	30.0	Benzaldehyde*	
09/30/16	cc1353-50	-27.7	2-nitroaniline	JC28248-3; -4; -5
		-39.9	4-nitrophenol*	(diluted)
		-25.9	2,4-dinitrotoluene	

DATE	LAB FILE	CRITERIA OUT	COMPOUND	SAMPLES
	ID#	RFs, %RSD, <u>%D</u> , r		AFFECTED
09/30/16	cc1353-50	-23.7	Diethylphthalate	JC28248-3; -4; -5
	ļ	-32.6	di-n-butylphthalate	(diluted)
		-25.3	bis(2-ethylhexyl)phthalate	
		-32.5	di-n-octylphthalate*	
	cc1354-25	28.7	Benzaldehyde*	
GCMSP				
09/27/16	CC4769-25	-31.2	Hexachlorocyclopentadiene*	JC28248-1
	CC4770-25	25.3	Benzaldehyde*	
09/30/16	CC4769-25	-31.2	Hexachlorocyclopentadiene*	JC28248-1 (50 x)
		27.7	2,4-nitrophenol*	
		-21.1	4-nitrophenol*	
		20.7	2,3,4,6-tetrachlorophenol	
		51.0	Pentachlorophenol	

Note: Initial and continuing calibration verifications meet the method and guidance document required performance criteria except for the cases described in this document.

Analytes not meeting the method and guidance document performance criteria are qualified as estimated (J) in affected samples.

* Analytes not meeting the method performance criteria but within the guidance document performed criteria. No action taken.

No closing calibration verification included in data package. No action taken, professional judgment.

^ 1,4-dioxane reported in sample JC28248-1 analyzed by the scan mode.

Sample JC28248-1 (50 x) analyzed for 1,4-dioxane; other analytes reported from Run #1.

QC samples were analyzed on GC/MS instruments GCMS3M (SIM); GCMSZ (Scan); and GCMSP (Scan - 09/25/16). QC samples are not qualified.

Actions:

Notes: Verify that the CCV is run at the required frequency (an opening and closing CCV must be run within 12-hour period).

All DMCs must meet the RRF values given in Table 2. No qualification of the data is necessary on DMCs RRF and %RSD/%D alone. Use professional judgment to evaluate DMCs and %RSD/%D data in conjunction with DMCs recoveries to determine the need for qualification of the data.

Qualify the initial calibration analytes listed in Table 2 using the following criteria in the CCVs:

Table 4. CCV Actions for Semivolatile Analysis

Criteria for Opening CCV	Criteria for Closing CCV -	Action	
	Criteria for Closing CCV	Detect	Non-detect
CCV not performed at required frequency and sequence	CCV not performed at required frequency	Use professional judgment R	Use professional judgment R
CCV not performed at specified concentration	CCV not performed at specified concentration	Use professional judgment	Use professional judgment
RRF < Minimum RRF in Table 2 for target analyte	RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment J or R	R
RRF ≥ Minimum RRF in Table 2 for target analyte	RRF ≥ Minimum RRF in Table 2 for target analyte	No qualification	No qualification
%D outside the Opening Maximum %D limits in Table 2 for target analyte	94D outside the Closing Maximum 94D limits in Table 2 for target analyte	Ţ	C)
%D within the inclusive Opening Maximum %D limits in Table 2 for target analyte	%D within the inclusive Closing Maximum %D limits in Table 2 for target analyte	No qualification	No qualification

All criteria were met
Criteria were not met
and/or see belowX

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Notes: The concentration of non-target compounds in all blanks must be less than or equal to 10 ug/L.

The concentration of target compounds in all blanks must be less than its CRQL listed in the method.

Samples taken from a drinking water tap do not have and associated field blank.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_target_an	alytes_detected_i	n_method_bla	anks_except_for_the_ca	ases_described_in_this_document
_09/28/16	OP97271-MB	wol.pAl	bis(2-ethylhexyl)p	hthalate8.1_ug/l
_10/04/16	OP97271-MB1	woll.pA	bis(2-ethylhexyl)p	hthalate6.2_ug/l
Note:	laboratory conta		nal judgment. bis(2-et te not found in associat	hylhexyl)phthalate is a common ted batch samples.
DATE ANALYZED	LABID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_field/trip/e	quipment_blanks	analyzed wit	th_this_data_package	
		_ , _		

All criteria were metX
Criteria were not met
and/or see below

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Qualify samples based on the criteria summarized in Table 5:

Table 5. Blank and TCLP/SPLP LEB Actions for Semivolatile Analysis

Blank Type	Blank Result	Sample Result	Action		
,	Detect	Non-detect	No qualification		
	< CRQL	< CRQI.	Report at CRQL and qualify as non-detect (U)		
		> CRQL	Use professional judgment		
		< CRQL	Report at CRQL and qualify as non-detect (U)		
Method,	> CRQI,	> CRQL but < Blank Result	Report at sample results and qualify as non-detect (U) or as unusable (R)		
TCLP/SPLP LEB, Field		≥ CRQL and > Blank Result	Use professional judgment		
	Grossly high	Detect	Report at sample results and qualify as unusable (R)		
	TIC > 5.0 ug/L (water) or 0.0050 mg/L (TCLP leachate) or TIC > 170 ug/Kg (soil)	Detect	Use professional judgment		

List samples qualified

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES

Matrix:___Groundwater_

All criteria were met _	X_
Criteria were not met	
and/or see below	_

SURROGATE SPIKE RECOVERIES - DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries – deuterated monitoring compounds. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Notes: Recoveries for DMCs in samples and blanks must be within the limits specified in Table 6.

The recovery limits for any of the compounds listed in Table 6 may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

If a DMC is not added in the samples and blanks or the concentrations of DMCs in the samples and blank not the specified, use professional judgment in qualifying the data.

Action Criteria. Detect Non-detect %R < 10% (excluding DMCs with 10% as a lower J-R acceptance limit) 10% < %R (excluding DMCs with 10% as a lower J-UJ acceptance limit) < Lower Acceptance Limit Lower Acceptance limit < %R < Upper Acceptance Limit No qualification No qualification %R > Upper Acceptance Limit No qualification

Table 7. DMC Actions for Semivolatile Analysis

List the percent recoveries (%Rs) which do not meet the criteria for DMCs (surrogate) recovery.

SAMPLE ID	SURROGATE COMPOUND	ACTION
_this_document_Non	uired_criteria_in_all_samples_analyzed_except_fo _deuterated_surrogates_added_to_the_samples_t_for_the_cases_described_in_this_document	were_within_laboratory
_Surrogates_not_recover_taken	ered_in_samples_JC28248-1;2;3;4;5_due	e_to_dilutionNo_action_

Table 8. Semivolatile DMCs and the Associated Target Analytes

1,4-Dioxane-d ₈ (DMC-1)	Phenol-d ₅ (DMC-2)	Bis(2-Chloroethyl) ether-d _s (DMC-3)			
1,4-Dioxane	Benzaldehyde	Bis(2-chloroethy))ether			
	Phenol	2,2'-Oxybis(1-chloropropane)			
		Bis(2-chloroethoxy)methane			
2-Chlorophenol-d4(DMC-4)	4-Methylphenol-da (DMC-5)	4-Chloroaniline-d ₄ (DMC-6)			
2-Chlorophenol	2-Methylphenol	4-Chloroanitine			
	3-Methylphenol	Hexachlorocyclopentadiene			
	4-Methylphenol	Dichlorobenzidine			
	2,4-Dimethylphenol				
Nitrobenzene-d ₅ (DMC-7)	2-Nitrophenol-d ₄ (DMC-8)	2,4-Dichlorophenol-d3(DMC-9)			
Acetophenone	Isophorone	2,4-Dichlorophenol			
N-Nitroso-di-n-propylamine	2-Nitrophenol	Hexachlorobutadiene			
Hexachloroethane		Hexachlorocyclopentadiene			
Nitrobenzene		4-Chloro-3-methylphenol			
2,6-Dinitrotoluene		2,4,6-Trichlorophenol			
2,4-Dinitrotoluene		2,4,5-Trichlorophenol			
N-Nitrosodiphenylamine		1,2,4,5-Tetrachlorobenzene			
		*Pentachlorophenol			
		2,3,4,6-Tetrachlorophenol			
Dimethylphthalate-d ₆ (DMC-10)	Acenaphthylene-da(DMC-11)	4-Nitrophenol-d4(DMC-12)			
Caprolactam	*Naphthalene	2-Nitroaniline			
1.1'-Biphenyl	*2-Methylnaphthalene	3-Nitroaniline			
Dimethylphthalate	2-Chloronaphthalene	2,4-Dinitrophenol			
Diethy lphthalate	*Acenaphthylene	4-Nitrophenol			
Di-n-butylphthalate	*Acenaphthene	4-Nitroaniline			
Butylbenzylphthalate					
Bis(2-ethylhexyl) phthalate		8			
Di-n-octy/phthalate					

Fluorene-d ₁₀ (DMC-13)	4,6-Dinitro-2-methylphenol-d ₂ (DMC-14)	Anthracene-d ₁₀ (DMC-15)
Dibenzofuran *Fluorene 4-Chlorophenyl-phenylether 4-Bromophenyl-phenylether Carbazole	4,6-Dinitro-2-methylphenol	Hexachlorobenzene Atrazine *Phenanthrene *Anthracene
Pyrene-d ₁₀ (DMC-16)	Benzo(a)pyrene-d ₁₂ (DMC-17)	
*Fluoranthene	3,3'-Dichlorobenzidine	
*Pyrene *Benzo(a)anthracene	*Benzo(b)fluoranthene *Benzo(k)fluoranthene	
*Chrysene	*Benzo(a)pyrene	
	*Indeno(1,2,3-cd)pyrene	
	*Dibenzo(a,h)anthracene	
	*Benzo(g,h,i)perylene	

^{*}Included in optional Target Analyte List (TAL) of PAHs and PCP only.

Table 9. Semivolatile SIM DMCs and the Associated Target Analytes

Fluoranthene-d10 (DMC-1)	2-Methylnaphthalene-d1 (DMC-2)					
Fluoranthene	Naphthalene					
Pyrene	2-Methylnaphthalene					
Benzo(a)anthracene	Acenaphthylene					
Chrysene	Acenaphthene					
Benzo(b)fluoranthene	Fluorene					
Benzo(k)fluoranthene	Pentachlorophenol					
Benzo(a)pyrene	Phenanthrene					
Indeno(1,2,3-ed)pyrene	Anthracene					
Dibenzo(a,h)anthracene						
Benzo(g,h,i)perylene						

All criteria were met
Criteria were not met
and/or see belowX

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

NOTES:

Data for MS and MSDs will not be present unless requested by the Region.

Notify the Contract Laboratory COR if a field or trip blank was used for the MS and MSD.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:JC27905-1 Sample ID:JC28248-2 Sample ID:JC27864-21_(SIM) Sample ID:JC27248-3_(SIM)							Matrix/l Matrix/l Matrix/l Matrix/l	_evel: _evel:	Grou	indwater indwater indwater indwater
The QC reported here applies to the following samples: Methad JC28248-2, JC28248-3, JC28248-4, JC28248-5, JC28248-6, JC28248-7								: SW846	8270D	
Compound	JC28248- ug/l	-2 Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
1,4-Dioxane	3120 b		100	5020	1440* a	100	4870	1290* a	a 3	10-119/31

⁽a) Outside control limits due to high level in sample relative to spike amount.

⁽b) Result is from Run #2.

The QC reported here applies to the following samples: Method: SW846 8270D BY SIM JC28248-1; JC28248-2; JC28248-3; JC28248-4; JC28248-5; JC28248-6

	JC2824	18-3	Spike	MS	MS	Spike	MSD	MSD		Limits
Compound	ug/l	Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD
1,4-Dioxane	43.6	Ε	2	78.2	1730*	a2	78.4	1740* a	0	20-160/30

^{* =} Outside of Control Limits.

Note: MS/MSD % results apply only to unspiked sample. MS/MSD % recoveries and RPD within laboratory control limits except in the cases described in this document.

No action taken on samples with MS/MSD % recoveries outside control limits due to high level in sample relative to spike amount.

- OC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

⁽a) Outside control limits due to high level in sample relative to spike amount.

All criteria were met __X__ Criteria were not met and/or see below ____

INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

DATE SAMPLE ID IS OUT IS AREA ACCEPTABLE ACTION RANGE

internal area meets the required criteria of batch samples corresponding to this data package.

Action:

- 1. If an internal standard area count for a sample or blank is greater than 213.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table 10 below):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
 - b. Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
 - b. Qualify non-detected associated compounds as unusable (R).
- 3. If an internal standard area count for a sample or blank is greater than or equal to 50.0%, and less than or equal to 213% of the area for the associated standard opening CCV or mid-point standard from initial calibration, no qualification of the data is necessary.
- 4. If an internal standard RT varies by more than 10.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- 5. If an internal standard RT varies by less than or equal to 10.0 seconds, no qualification of the data is necessary.

Note: Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

State in the Data Review Narrative if the required internal standard compounds are not added to a sample or blank or if the required internal standard compound is not analyzed at the specified concentration.

Actions:

Table 10. Internal Standard Actions for Semivolatile Analysis

Criteria	Action		
Cineria	Detect Non-dete		
Area response < 20% of the opening CCV or mid-point standard CS3 from ICAL	1+	R	
20% < Area response < 50% of the opening CCV or mid-point standard CS3 from ICAL	1 <u>j</u>	ÚJ	
50% < Area response < 200% of the opening CCV or mid-point standard CS3 from ICAL	No qualification	No qualification	
Area response > 200% of the opening CCV or mid-point standard CS3 from ICAL	J-	No qualification	
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL > 10.0 seconds	R	R	
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL < 10.0 seconds	No qualification	No qualification	

		Criteria were not met and/or see below
TARGET CO	MPOUND IDENTIFICATION	
Criteria:		
Is the Relativ RRT [openii calibration].	ve Retention Times (RRTs) of reported componing Continuing Calibration Verification (CC	ounds within ±0.06 RRT units of the standard V) or mid-point standard from the initial Yes? or No?
List compour	nds not meeting the criteria described above:	
Sample ID	Compounds	Actions
	<u> </u>	
		-
spectrum fro	a of the sample compound and a current la m the associated calibration standard (oper nust match according to the following criteria: All ions present in the standard mass spec must be present in the sample spectrum.	boratory-generated standard [i.e., the mass along CCV or mid-point standard from initial ctrum at a relative intensity greater than 10%
b.	The relative intensities of these ions must a	agree within ±20% between the standard and bundance of 50% in the standard spectrum, must be between 30-70%).
G.		ample mass spectrum, but not present in the y a reviewer experienced in mass spectral
List compoun	ds not meeting the criteria described above:	
Sample ID	Compounds	Actions
_ldentified_co	ompounds_meet_the_required_criteria_	

All criteria were met _X__

Action:

- 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- 2. Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- 3. Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

400	 600

Sample ID	Compound	Sample ID	Compound

Action:

- 1. Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- 2. General actions related to the review of TIC results are as follows:
 - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J).
 - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- 3. In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).
- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).

- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".
- 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

All criteria were metX
Criteria were not met
and/or see below

SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

Action:

- 1. When a sample is analyzed at more than one dilution, the lower CRQL are used unless a QC exceedance dictates the use of higher CRQLs from the diluted sample. Samples reported with an "E" qualifier should be reported from the diluted sample.
- 2. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 3. For non-aqueous samples, if the solids is less than 10.0%, use professional judgment for both detects and non-detects. If the percent solid for a soil sample is greater than or equal to 10.0% and less than 30.0%, use professional judgment to qualify detects and non-detects. If the percent solid for a soil sample is greater than or equal to 30.0%, detects and non-detects should not be qualified (see Table 11).
- 4. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- 5. Results between MDL and CRQL should be qualified as estimated "J".
- 6. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves should not be reported.

Table 11. Percent Solids Actions for Semivolatile Analysis for Non-Aqueous Samples

Criteria	Ac	etion etion
Cinteria	Detects	Non-detects
%Solids < 10.0%	Use professional judgment	Use professional judgment
10.0% < %Solids < 30.0%	Use professional judgment	Use professional judgment
%Solids > 30.0%	No qualification	No qualification

SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
JC28248-1	50 x	1,4-dixane outside calibration range
JC28248-2	200 x	1,4-dixane outside calibration range
JC28248-3	100 x	1,4-dixane outside calibration range
JC28248-4	100 x	1,4-dixane outside calibration range
JC28248-5	100 x	1,4-dixane outside calibration range

	All criteria were met Criteria were not met and/or see belowN/A
FIELD DUPLICATE PRECISION	
Sample IDs: -	Matrix:
Field duplicates samples may be taken and analyzed as an analyses measure both field and lab precision; therefore, the laboratory duplicates which only laboratory performance. It is a will have a greater variance than water matrices due to difficult field duplicate samples.	results may have more variability than Iso expected that soil duplicate results

The project QAPP should be reviewed for project-specific information. Suggested criteria: if large RPD (> 50 %) is observed, confirm identification of the samples and note differences. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL ug/L	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
No field/laborator used to assess protarget analytes ab	recision. R	PD within the r	part of this data package equired guidance docu	ge. M S/MS Iment criteria	D % recoveries RPD a < 50 % for detected
target analytes at	1				

All criteria were met _X
Criteria were not met
and/or see below

OTHER ISSUES

A.	System Performa	ance	
List sa	imples qualified ba	sed on the degradation of systen	n performance during simple analysis:
Samp		Comments	Actions
during	rofessional judgme sample analyses	nt to qualify the data if it is deter Inform the Contract Laborato	mined that system performance has degraded ry Program COR any action as a result of ected the data.
В.	Overall Assessme	ent of Data	
List sa	mples qualified bas	sed on other issues:	
Sampl	e ID ========	Comments	Actions
			e_dataResults_are_valid_and_can_be_used vn_below
Note:			
Action			

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.
- 2. Write a brief narrative to give the user an indication of the analytical limitations of the data. Inform the Contract Laboratory COR the action, any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).

- 3. Sometimes, due to dilutions, re-analysis or SIM/Scan runs are being performed, there will be multiple results for a single analyte from a single sample. The following criteria and professional judgment are used to determine which result should be reported:
 - The analysis with the lower CRQL
 - The analysis with the better QC results
 - The analysis with the higher results

EXECUTIVE NARRATIVE

SDG No:

JC28248

Laboratory:

Accutest, Florida

Analysis:

SW846-8015C

Number of Samples:

7

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Seven (7) samples were analyzed for the low molecular weight alcohols (LMWAs) list following method SW846-8015C. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846 (Final Update III, December 1996)," specifically for Methods 8000/8015C are utilized. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

1. Initial, continuing, and final calibration verifications meets method specific criteria in at least one of the two columns except for the cases described the Data Review Worksheet. Final calibration verification included in data packages.

Analytes not meeting the calibration performance criteria qualified (J) or (UJ) in affected samples.

Only one column used in for all samples.

2. Samples JC28248-6 and JC28248-7 sampled on 09/21/16 based on chain-of custody form; recorded as sampled on 09/20/16 on analysis report. Sampling date 09/21/16 used for validation purposes.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

October 15, 2016

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC28248-1

Sample location: BMSMC Building 5 Area

Sampling date: 9/19/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name Ethanol Isobutyl Alcohol Isopropyl Alcohol	Result 200 100 100	Units ug/l ug/l	Dilution Factor 1.0 1.0	Lab Flag - -	Validation U U	Reportable Yes Yes
		ug/l	1.0	-	UJ	Yes 🗶
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol sec-Butyl Alcohol	100	ug/l	1.0	-	UJ	Yes +
•	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/i	1.0	-	U	Yes

Sample ID: JC28248-2

Sample location: BMSMC Building 5 Area

Sampling date: 9/20/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name Ethanol Isobutyl Alcohol Isopropyl Alcohol n-Propyl Alcohol n-Butyl Alcohol sec-Butyl Alcohol Methanol	Result 200 100 100 100 100 100 200	ug/l ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0 1.0 1.0	Lab Flag	Validation U U UJ U UJ U	Reportable Yes Yes Yes Yes Yes Yes Yes Yes Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC28248-3

Sample location: BMSMC Building 5 Area

Sampling date: 9/20/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	200	ug/l	1.0		U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	Ŋ	Yes
Isopropyl Alcohol	100	ug/l	1.0	•	LUJ	Yes X
n-Propyl Alcohol	100	ug/i	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	IJ	Yes +
sec-Butyl Alcohol	100	ug/i	1.0	-	Ü	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC28248-4

Sample location: BMSMC Building 5 Area

Sampling date: 9/20/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	200	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	•	UJ	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	UJ	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC28248-5

Sample location: BMSMC Building 5 Area

Sampling date: 9/20/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	200	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC28248-6

Sample location: BMSMC Building 5 Area

Sampling date: 9/21/2016

Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	200	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	•	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ue/l	1.0	-	U	Yes

Sample ID: JC28248-7

1 4011 1

Sample location: BMSMC Building 5 Area

Sampling date: 9/21/2016

Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	200	ug/l	1.0	-	IJ	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/i	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	_	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	91 -	U	Yes

	Project Number:JC28248
	Date:09/19-21/2016
	Shipping Date:09/22/2016
	EPA Region: 2
The following guidelines for evaluating volatile organics was locument will assist the reviewer in using professional perving the needs of the data users. The sample resulpuidance documents in the following order of precepty size of the data was also between the process of th	E ORGANIC PACKAGE vere created to delineate required validation actions. This judgment to make more informed decision and in better lts were assessed according to USEPA data validation edence: "Test Methods for Evaluating Solid Waste, ecember 1996)," specifically for Methods 8000/8015C are ed on the data review worksheets are from the primary data package received has been reviewed
ab. Project/SDG No.:JC28248	Sample matrix: Groundwater
lo. of Samples:7_	
rip blank No.: ield blank No.: quipment blank No.: ield duplicate No.:	
X Data CompletenessX Holding TimesN/A_ GC/MS TuningN/A_ Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate	X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits
Overall Comments:_Low_molecular_weight_a Samples_JC28248-6_and_JC28248-7_sampled_on recorded_as_sampled_on_09/20/16_on_analysis_re validation purposes	alcohols_by_SW-846_8015C n_09/21/16_based_on_chain-of-custody_form; eportSampling_date_09/21/16_used_for
Definition of Qualifiers: - Estimated results U- Compound not detected U- Rejected data U- Estimated nondetect Reviewer:	
late: October 15, 2016	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED

All criteria were metX
Criteria were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
All				
All samples anal	yzed within the recomm	nended method holding	g. All sam	ples properly preserved.
			+	
			+	
			+	

<u>Criteria</u>

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles. Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles. Soil samples- 7 days from sample collection.

Cooler temperature (Criteria: 4 + 2 °C): 5.2°C

<u>Actions</u>

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

	All criteria were metN/A	
Criteria	were not met see below	

GC/MS TUNING

The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits
N/A_ The BFB performance results were reviewed and found to be within the specified criteria.
N/A_ BFB tuning was performed for every 12 hours of sample analysis.
If no, use professional judgment to determine whether the associated data should be accepted, qualified or rejected.
List the samples affected:
If mass calibration is in error, all associated data are rejected.

All criteria were met
Criteria were not met
and/or see belowX

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	_09/21/16
Dates of continuing calibration:	09/21/16;09/27/16;
Dates of final calibration verification:_	09/21/16;09/27/16
Instrument ID number:	GCGH
Matrix/Level:Aqueou	is/low

DATE	LAB FILE ID#	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
09/27/16	CC5496-5000	-22.9	1-butanoi*	JC24248-1 to -4
	CC5496-1000	-24.4	2-propanol*	
			<u> </u>	

Note: Initial, continuing, and final calibration verifications meets method specific criteria in at least one of the two columns except for the cases described in this document. Final calibration verification included in data packages.

Analytes not meeting the calibration performance criteria qualified (J) or (UJ) in affected samples.

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be \leq 15 % regardless of method requirements for CCC.

All %Ds must be < 20% regardless of method requirements for CCC.

It should be noted that Region 2 SOP HW-24 does not specify criterion for the curve correlation coefficient (r). A limit for r of > 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

^{*} Only one column used.

All criteria were metX
Criteria were not met
and/or see below

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
All_method		_method_specifi	ic_criteria	
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_field/trip/ed	quipment_blank	s_included_in_t	his_data_package	

All criteria were metX
Criteria were not met
and/or see below

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene) ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and ≤ AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES

All criteria were metX
Criteria were not met
and/or see below

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

Matrix: solid/aqueous

SAMPLE ID		SURROGATE COMPOUND			ACTION
	Hexanol S1 a	DBFM	TOL-d8	BFB	
JC28248-1 JC28248-2 JC28248-3 JC28248-4 JC28248-5 JC28248-6 JC28248-7 GGH5504-BS GGH5504-MB2 GGH5504-MB3 JC28001-1MSD GGH5504-MB1	70 80 84 86 84 91 89 93 85 87 81 88				

(a) Recovery from GC signal #1

Note: All surrogate recoveries within laboratory control limits except in the cases described in this document.

QC Limits* (Aqueous)				
LL_to_UL	_56_to_145_	to	to	to
QC Limits* (Solid-Low)				
LL_to_UL	to	to	to	to
QC Limits* (Solid-Med)				
LL_to_UL	to	to	to	to
1,2-DCA = 1,2-Dichloro	methane-d4		TOL-d8 = T	'oluened8
DBFM = Dibromofluoror		nofluorobenzene		
	110010110			

- QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 80 120 % for aqueous and 70 130 % for solid samples.

Actions:

QUALITY	%R < 10%	%R = 10% - LL	%R > UL
Positive results	J	J	J
Nondetects results	R	UJ	Accept

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%. If any one surrogate in a fraction shows < 10 % recovery.

All criteria were met _	X.	
Criteria were not met		
and/or see below		_

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:JC	28001-1MS/-MSD			Matrix/Level:	Groundwater/low	
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION	
MS/MSD%_re	ecoveries_and_RPD_	within_lab	oratory_	control_limits		
				-		

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

^{*} QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.

^{*} If QC limits are not available, use limits of 70 – 130 %.

All criteria were metX
Criteria were not met
and/or see below

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD - Unspiked Compounds

It should be noted that Region 2 SOP HW-24 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

Sample ID:			Matrix/Le	vel/Unit	-
COMPOUND	SAMPLE CONC.	MS CONC.	MSD CONC.		ACTION
	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			***	

Actions:

A separate worksheet should be used for each MS/MSD pair.

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All criteria were metX
Criteria were not met
and/or see below

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

	LCS ID	COMPOUND	% R	QC LIMIT	
Recoverie	s_within_labor	atory_control_limits			
<u> </u>					_
	····				_

Note:

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

		All criteria were met
IX.	FIELD/LABORATORY DUPLICATE PRECISION	
	Sample IDs:	Matrix:

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

Suggested criteria: RPD ± 30% for aqueous samples, RPD ± 50 % for solid samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
		n. RPD within labora	th this data package. Matery, generally accepta ce criteria control limits.	ble and	6 recoveries RPD used guidance document

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were metN/A
Criteria were not met
and/or see below

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +100% or -50% of the IS area in the associated calibration standard.
- * Retention time (RT) within 30 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2,000 3			

Actions:

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -25%		IS AREA > + 100%
		TO - 50%	
Positive results	J	J	J
Nondetected results	R	UJ	ACCEPT

2. If a IS retention time varies more than 30 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were met __X__ Criteria were not met and/or see below ____

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

JC28248-1

Hexanol

RF = 64.25

[] = (225390)/(64.25)

= 3,508 ppm OK

All criteria were met _X
Criteria were not met
and/or see below

XII. QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION

В.	Percent Solids
	List samples which have ≤ 50 % solids

Actions:

If the % solids of a soil sample is 10-50%, estimate positive results (J) and nondetects (UJ)

If the % solids of a soil sample is < 10%, estimate positive results (J) and reject nondetects (R) $\,$

EXECUTIVE NARRATIVE

SDG No:

JC28248

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8081B

Number of Samples:

7

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Seven (7) samples were analyzed for selected pesticides following method SW846-8081B. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence *Hazardous Waste Support Section SOP No. HW-36A, Revision 0, June, 2015. SOM02.2. Pesticide Data Validation.* The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings: Major findings:

None None

Minor findings:

1. Samples JC28248-6 and JC28248-7 sampled on 09/21/16 based on chain-of custody form; recorded as sampled on 09/20/16 on analysis report. Sampling

date 09/21/16 used for validation purposes.

- 2. Samples JC28248-1; JC28248-4 to JC28248-7 were re-extracted due to BS outside in house QC limits. Originally prep date was within holding time. No action taken.
- 3. Initial and initial calibration verification within the guidance document performance criteria. Continuing calibration % differences meet the performance criteria in at least one of the two columns. Final calibration verification not included in data package. No action taken, professional judgment.
- 4. MS recovery outside the laboratory control limits for Aldrin in sample JC28157-1MS. No action taken, results apply to unspiked sample.
- **5.** Heptachlor and Aldrin recovered outside laboratory control limits in Blank Spike. No action taken, professional judgment. Analytes not detected in sample batch. Heptachlor reported from 1st signal. %D of check on 2nd signal exceeds method criterion (20%) so 2nd signal is used for confirmation only.

COMMENTS: Results are valid and can be used for decision making purposes.

Reviewers Name: Rafael Infante

Chemist License 1888

Signature:

Date: October 15, 2016

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC28248-1

Sample location: BMSMC Building 5 Area

Sampling date: 19-Sep-16 Matrix: Groundwater

MEDIOL	, 0001B					
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.010	ug/l	1	-	U	Yes
alpha-BHC	0.010	ug/l	1	-	U	Yes
beta-BHC	0.010	ug/l	1	-	U	Yes
delta-BHC	0.010	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	-	U	Yes
alpha-Chlordane	0.010	ug/l	1	-	U	Yes
gamma-Chlordane	0.010	ug/l	1	-	U	Yes
Dieldrin	0.010	ug/l	1	-	U	Yes
4,4'-DDD	0.010	ug/l	1	-	U	Yes
4,4'-DDE	0.010	ug/l	1	-	U	Yes
4,4'-DDT	0.010	ug/l	1	-	U	Yes
Endrin	0.010	ug/l	1	-	U	Yes
Endosulfan sulfate	0.010	ug/f	1	-	U	Yes
Endrin aldehyde	0.010	ug/l	1	-	U	Yes
Endrin ketone	0.010	ug/l	1	-	U	Yes
Endosulfan-I	0.010	ug/l	1	-	U	Yes
Endosulfan-II	0.010	ug/l	1	-	U	Yes
Heptachlor	0.010	ug/l	1	~	U	Yes
Heptachlor epoxide	0.010	ug/l	1	-	U	Yes
Methoxychlor	0.021	ug/l	1	-	U	Yes
Toxaphene	0.26	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 20-Sep-16 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.010	ug/l	1	-	U	Yes
alpha-BHC	0.010	ug/l	1	-	U	Yes
beta-BHC	0.010	ug/l	1	-	U	Yes
delta-BHC	0.010	ug/i	1	-	U	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	-	U	Yes
alpha-Chlordane	0.010	ug/l	1	-	U	Yes
gamma-Chlordane	0.010	ug/l	1	-	U	Yes
Dieldrin	0.010	ug/l	1	-	U	Yes
4,4'-DDD	0.010	ug/l	1	-	U	Yes
4,4'-DDE	0.010	ug/l	1	-	U	Yes
4,4'-DDT	0.010	ug/l	1	-	U	Yes
Endrin	0.010	ug/l	1	-	IJ	Yes
Endosulfan sulfate	0.010	ug/l	1	-	υ	Yes
Endrin aldehyde	0.010	ug/l	1	-	U	Yes
Endrin ketone	0.010	ug/l	1	-	U	Yes
Endosulfan-!	0.010	ug/l	1	-	U	Yes
Endosulfan-II	0.010	ug/l	1	-	U	Yes
Heptachlor	0.010	ug/l	1	-	U	Yes
Heptachlor epoxide	0.010	ug/l	1	-	U	Yes
Methoxychlor	0.020	ug/l	1	-	บ	Yes
Toxaphene	0.25	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 20-Sep-16 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.010	ug/l	1	-	U	Yes
alpha-BHC	0.010	ug/l	1	-	U	Yes
beta-BHC	0.010	ug/l	1	-	U	Yes
delta-BHC	0.010	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	-	υ	Yes
alpha-Chlordane	0.010	ug/l	1	-	U	Yes
gamma-Chlordane	0.010	ug/l	1	-	U	Yes
Dieldrin	0.010	ug/l	1	-	U	Yes
4,4'-DDD	0.010	ug/l	1	-	U	Yes
4,4'-DDE	0.010	ug/l	1	-	U	Yes
4,4'-DDT	0.010	ug/l	1	-	U	Yes
Endrin	0.010	ug/l	1	**	U	Yes
Endosulfan sulfate	0.010	ug/l	1	-	U	Yes
Endrin aldehyde	0.010	ug/l	1	-	U	Yes
Endrin ketone	0.010	ug/l	1	-	U	Yes
Endosulfan-I	0.010	ug/l	1	-	U	Yes
Endosulfan-li	0.010	ug/l	1	-	U	Yes
Heptachlor	0.010	ug/l	1	-	U	Yes
Heptachlor epoxide	0.010	ug/l	1	_	U	Yes
Methoxychlor	0.020	ug/l	1	-	U	Yes
Toxaphene	0.25	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 20-Sep-16 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.010	ug/l	1	-	U	Yes
alpha-BHC	0.010	ug/l	1	-	U	Yes
beta-BHC	0.010	ug/l	1	-	U	Yes
delta-BHC	0.010	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	-	U	Yes
alpha-Chlordane	0.010	ug/l	1	-	บ	Yes
gamma-Chlordane	0.010	ug/l	1	-	Ü	Yes
Dieldrin	0.010	ug/l	1	-	U	Yes
4,4'-DDD	0.010	ug/l	1	-	U	Yes
4,4'-DDE	0.010	ug/l	1	-	U	Yes
4,4'-DDT	0.010	ug/l	1	-	บ	Yes
Endrin	0.010	ug/l	1	-	U	Yes
Endosulfan sulfate	0.010	ug/l	1	-	U	Yes
Endrin aldehyde	0.010	ug/l	1	-	U	Yes
Endrin ketone	0.010	ug/l	1	-	U	Yes
Endosulfan-I	0.010	ug/l	1	-	U	Yes
Endosulfan-II	0.010	ug/l	1	-	U	Yes
Heptachlor	0.010	ug/l	1	-	U	Yes
Heptachlor epoxide	0.010	ug/l	1	-	U	Yes
Methoxychlor	0.020	ug/l	1		U	Yes
Toxaphene	0.26	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 20-Sep-16 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.010	ug/l	1	-	U	Yes
alpha-BHC	0.010	ug/l	1	_	U	Yes
beta-BHC	0.010	ug/l	1	_	U	Yes
delta-BHC	0.010	ug/l	1	_	U	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	_	Ū	Yes
alpha-Chlordane	0.010	ug/l	1	_	U	Yes
gamma-Chlordane	0.010	ug/l	1	-	U	Yes
Dieldrin	0.010	ug/l	1		U	Yes
4,4'-DDD	0.010	ug/l	1	_	U	Yes
4,4'-DDE	0.010	ug/l	1	_	U	Yes
4,4'-DDT	0.010	ug/l	1	_	Ų	Yes
Endrin	0.010	ug/l	1	-	U	Yes
Endosulfan sulfate	0.010	ug/l	1	_	U	Yes
Endrin aldehyde	0.010	ug/l	1	-	U	Yes
Endrin ketone	0.010	ug/l	1	-	U	Yes
Endosulfan-t	0.010	ug/l	1	-	U	Yes
Endosulfan-II	0.010	ug/l	1	-	U	Yes
Heptachlor	0.010	ug/l	1	_	Ų	Yes
Heptachlor epoxide	0.010	ug/l	1	-	U	Yes
Methoxychlor	0.020	ug/l	1	_	U	Yes
Toxaphene	0.26	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 21-Sep-16 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.010	ug/l	1	-	U	Yes
alpha-BHC	0.010	ug/l	1	-	U	Yes
beta-BHC	0.010	ug/l	1	-	Ų	Yes
delta-BHC	0.010	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	-	U	Yes
alpha-Chlordane	0.010	ug/l	1	-	U	Yes
gamma-Chlordane	0.010	ug/l	1	-	U	Yes
Dieldrin	0.010	ug/l	1	-	U	Yes
4,4'-DDD	0.010	ug/l	1	-	U	Yes
4,4'-DDE	0.010	ug/l	1	-	U	Yes
4,4'-DDT	0.010	ug/l	1	-	U	Yes
Endrin	0.010	ug/l	1	-	U	Yes
Endosulfan sulfate	0.010	ug/l	1	-	U	Yes
Endrin aldehyde	0.010	ug/l	1	-	U	Yes
Endrin ketone	0.010	ug/l	1	-	U	Yes
Endosulfan-I	0.010	ug/l	1	-	U	Yes
Endosulfan-II	0.010	ug/l	1	-	U	Yes
Heptachlor	0.010	ug/l	1	-	U	Yes
Heptachlor epoxide	0.010	ug/l	1	-	U	Yes
Methoxychlor	0.020	ug/l	1	-	U	Yes
Toxaphene	0.25	ug/l	1	-	U	Yes

. * : *

Sample location: BMSMC Building 5 Area

Sampling date: 21-Sep-16 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lah Flag	Validation	Reportable
Aldrin	0.010	ug/l	1	-	П	Yes
alpha-BHC	0.010	ug/l	1	-	บ	Yes
beta-BHC	0.010				_	
		ug/i	1	-	U	Yes
delta-BHC	0.010	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.010	ug/i	1	-	U	Yes
alpha-Chlordane	0.010	ug/l	1	-	U	Yes
gamma-Chlordane	0.010	ug/l	1	-	U	Yes
Dieldrin	0.010	ug/l	1	_	U	Yes
4,4'-DDD	0.010	ug/l	1	-	U	Yes
4,4'-DDE	0.010	ug/l	1	-	U	Yes
4,4'-DDT	0.010	ug/l	1	-	U	Yes
Endrin	0.010	ug/l	1	-	U	Yes
Endosulfan sulfate	0.010	ug/l	1	-	U	Yes
Endrin aldehyde	0.010	ug/l	1	-	U	Yes
Endrin ketone	0.010	ug/i	1	_	U	Yes
Endosulfan-t	0.010	ug/l	1	~	U	Yes
Endosulfan-II	0.010	ug/l	1	_	U	Yes
Heptachlor	0.010	ug/l	1	-	U	Yes
Heptachlor epoxide	0.010	ug/i	1	-	U	Yes
Methoxychlor	0.021	ug/l	1	-	U	Yes
Toxaphene	0.26	ug/l	1	-	U	Yes

	Project/Case Number:JC28248
	Sampling Date:09/19-21/2016
	Shipping Date:09/22/2016
	EPA Region No.: 2
REVIEW OF PESTICIDE ORG	
The following guidelines for evaluating volatile required validation actions. This document will as judgment to make more informed decision and in users. The sample results were assessed according documents in the following order of precedence H. HW-36A, Revision 0, June, 2015. SOM02.2. Pesticidata validation actions listed on the data reviet guidance document, unless otherwise noted.	ssist the reviewer in using professional in better serving the needs of the data ing to USEPA data validation guidance azardous Waste Support Section SOP No. the Data Validation. The QC criteria and
The hardcopied (laboratory name) _Accutest	data package received has been parized. The data review for VOCs included:
Lab. Project/SDG No.:JC28248 No. of Samples:7	Sample matrix:Groundwater
Trip blank No.:	
Field blank No.:	
Equipment blank No.:	
Field dunlicate No:	
Field duplicate No.:	
Field spikes No.:	
QC audit samples:	
X Data CompletenessX Holding TimesN/A GC/MS TuningX_ Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate	XLaboratory Control SpikesXField DuplicatesXCalibrationsXCompound IdentificationsXCompound QuantitationXQuantitation Limits
Overall Comments:TCL_pesticides_list_by_SW846-80	181B
Samples JC28248-6 and JC28248-7 sampled on 09 recorded as sampled on 09/20/16 on analysis report. Spurposes.	//21/16 based on chain-of custody form;
Definition of Qualifiers:	
	not detected
	ound not detected ted nondetect
Date: October 15. 2016	
DateOUDUUE! 10,_2010_ :	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
-		
2.5		3/3d Re
- 100 Control		
<u> </u>		
	<u> </u>	<u> </u>
· · · · · · · · · · · · · · · · · · ·		
01		
W- 50 St		

All criteria were metX
Criteria were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED/ANALYZED	ACTION
Samples properly	y preserved.		
JC28248-1	9/19/16	10/06/16	No action
JC28248-4	9/20/16	10/06/16	No action
JC28248-5	9/20/16	10/06/16	No action
JC28248-6	9/21/16	10/06/16	No action
JC28248-7	9/21/16	10/06/16	No action

<u>Preservatives:</u> All_samples_extracted_and_analyzed_within_the_required_criteria_except_for_the_cases_described_in_this_document.

Note: Samples were re-extracted due to BS outside in house QC limits. Originally prep date was within holding time. No action taken.

<u>Criteria</u>

Aqueous samples - seven (7) days from sample collection for extraction; 40 days from sample collection for analysis.

Non-aqueous samples – fourteen (14) days from sample collection for extraction; 40 days from sample collection for analysis.

Cooler temperature (Criteria: 4 ± 2 °C): 5.2°C - OK

Actions

Qualify aqueous sample results using preservation and technical holding time information as follows:

- a. If there is no evidence that the samples were properly preserved ($T = 4^{\circ}C \pm 2^{\circ}C$), and the samples were extracted or analyzed within the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ).
- b. If there is no evidence that the samples were properly preserved ($T = 4^{\circ}C \pm 2^{\circ}C$), and the samples were extracted or analyzed outside the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ).
- c. If the samples were properly preserved, and were extracted and analyzed within the technical holding times, no qualification of the data is necessary.
- d. If the samples were properly preserved, and were extracted or analyzed outside the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ). Note in the Data

Review Narrative that holding times were exceeded and the effect of exceeding the holding time on the resulting data.

- e. Use professional judgment to qualify samples whose temperature upon receipt at the laboratory is either below 2 degrees centigrade or above 6 degrees centigrade.
- f. If technical holding times are grossly exceeded, use professional judgment to qualify the data.

Qualify non-aqueous sample results using preservation and technical holding time information as follows:

- a. If there is no evidence that the samples were properly preserved (T = 4° C \pm 2° C), and the samples were extracted or analyzed within the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ).
- b. If there is no evidence that the samples were properly preserved ($T = 4^{\circ}C \pm 2^{\circ}C$), and the samples were extracted or analyzed outside the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ).
- c. If the samples were properly preserved, and were extracted and analyzed within the technical holding time, no qualification of the data is necessary.
- d. If the samples were properly preserved, and were extracted or analyzed outside the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ). Note in the Data Review Narrative that holding times were exceeded and the effect of exceeding the holding time on the resulting data.
- e. Use professional judgment to qualify samples whose temperature upon receipt at the laboratory is either below 2 degrees centigrade or above 6 degrees centigrade.
- f. If technical holding times are grossly exceeded, use professional judgment to qualify the data.

	All criteria were metX	
Criteria	were not met see below	

GAS CHROMATOGRAPH WITH ELECTRON CAPTURE DETECTOR (GC/ECD) INSTRUMENT PERFORMANCE CHECK (SECTIONS 1 TO 5)

1. Resolution Check Mixture

Criteria

Is the resolution between two adjacent peaks in the Resolution Check Mixture C greater than or equal to 80.0% for all analytes for the primary column and greater than or equal to 50.0% for the confirmation column?

Yes? or No?

is the resolution between two adjacent peaks in the Resolution Check Mixture (A and B) greater than or equal to 60.0%?

Yes? or No?

Note:

If resolution criteria are not met, the quantitative results may not be accurate due to inadequate resolution. Qualitative identifications may also be questionable if coelution exists.

Action

- a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

2. Performance Evaluation Mixture (PEM) Resolution Criteria

Criteria

Is PEM analysis performed at the required frequency (at the end of each pesticide initial calibration sequence and every 12 hours)?

Yes? or No?

Action

a. If PEM is not performed at the required frequency, qualify all associated sample and blank results as unusable (R).

Criteria

Is PEM % Resolution < 90%?

Yes? or No?

Action

- a. a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

3. PEM 4,4'-DDT Breakdown

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is detected?

Yes? or No?

Action

a. Qualify detects for 4,4'-DDT; detects for 4,4'-DDD; and detects for 4,4'-DDE as estimated (J)

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is not detected

Yes? or No?

Action

- a. Qualify non-detects for 4,4'- DDT as unusable (R)
- b. Qualify detects for 4,4'-DDD as tentatively identified (NJ)
- c. Qualify detects for 4,4'-DDE as tentatively identified (NJ)

4. PEM Endrin Breakdown

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is detected?

Yes? or No?

Action

a. Qualify detects for Endrin; detects for Endrin aldehyde; and detects for Endrin ketone as estimated (J)

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is not detected

Yes? or No?

Action

- a. Qualify non-detects for Endrin as unusable (R)
- b. Qualify detects for Endrin aldehyde as tentatively identified (NJ)
- c. Qualify detects for Endrin ketone as tentatively identified (NJ)

	All criteria were metX_	
Criteria	were not met see below	

5. Mid-point Individual Standard Mixture Resolution -

Criteria

Is the resolution between two adjacent peaks in the Resolution Check Mixture C greater than or equal to 80.0% for all analytes for the primary column and greater than or equal to 50.0% for the confirmation column?

Yes? or No?

Is the resolution between two adjacent peaks in the Resolution Check Mixture (A and B) greater than or equal to 90.0%?

Yes? or No?

Note: If resolution criteria are not met, the quantitative results may not be accurate due to inadequate resolution. Qualitative identifications may also be questionable if coelution exists.

Action

- a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

Criteria

Is mid-point individual standard mixture analysis performed at the required frequency (every 12 hours)?

Yes? or No?

Action

a. If the mid-point individual standard mixture analysis is not performed at the required frequency, qualify all associated sample and blank results as unusable (R).

All criteria were metX
Criteria were not met
and/or see below

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	09/28/16
	verification:09/28/16
	ration:_10/04/16;_10/05/16;_10/06/16;_10/07/16_
Dates of final calibration_	•
	GC1G
Matrix/Level:	
	•

DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, <u>%D</u> , r	COMPOUND	SAMPLES AFFECTED
Contin	uing ca	libration	% differences meet the n verification not include	performance criter	ment performance criteria. ia in at least one of the two No action taken, professional
		· - ·			

Criteria

Are a five point calibration curve delivered with concentration levels as shown in Table 3 of SOP HW-36A, Revision 0, June, 2015?

Yes? or No?

Actions

If the standard concentrations listed in Table 3 are not used, use professional judgment to evaluate the effect on the data

Criteria

Are RT Windows calculated correctly?

Yes? or No?

All criteria were metX
Criteria were not met
and/or see below

Action

Recalculate the windows and use the corrected values for all evaluations.

Criteria

Are the Percent Relative Standard Deviation (%RSD) of the CFs for each of the single component target compounds less than or equal to 20.0%, except for alpha-BHC and delta-BHC?

Yes? or No?

Are the %RSD of the CFs for alpha-BHC and delta-BHC less than or equal to 25.0%. Yes? or No?

Is the %RSD of the CFs for each of the Toxaphene peaks must be < 30% when 5-point ICAL is performed?

Yes? or No?

Is the %RSD of the CFs for the two surrogates (tetrachloro-m-xylene and decachlorobiphenyl) less than or equal to 30.0%.

Yes? or No?

Action

- a. If the %RSD criteria are not met, qualify detects as estimated (J) and use professional judgment to qualify non-detected target compounds.
- b. If the %RSD criteria are within allowable limits, no qualification of the data is necessary

Continuing Calibration Checks

Criteria

Is the continuing calibration standard analyzed at the acceptable time intervals? Yes? or No?

Action

- a. If more than 14 hours has elapsed from the injection of the instrument blank that begins an analytical sequence (opening CCV) and the injection of either a PEM or mid-point concentration of the Individual Standard Mixtures (A and B) or (C), qualify all data as unusable (R).
- b. If more than 12 hours has elapsed from the injection of the instrument blank that begins an analytical sequence (opening CCV) and the injection of the last sample or blank that is part of the same analytical sequence, qualify all data as unusable (R).
- c. If more than 72 hours has elapsed from the injection of the sample with a Toxaphene detection and the Toxaphene Calibration Verification Standard (CS3), qualify all data as unusable (R).

Criteria

Is the Percent Difference (%D) within ±25.0% for the PEM sample?

Yes? or No?

Action

a. Qualify associated detects as estimated (J) and non-detects as estimated (UJ).

Criteria

For the Calibration Verification Standard (CS3); is the Percent Difference (%D) within ± 25.0%? Yes? or No?

Action

Qualify associated detects as estimated (J) and non-detects as estimated (UJ).

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is detected?

Yes? or No?

Action

- a. Qualify detects for 4,4'-DDT; detects for 4,4'-DDD; and detects for 4,4'-DDE as estimated (J)
- b. Non-detected associated compounds are not qualified

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is not detected

Yes? or No?

Action

- a. Qualify non-detects for 4,4'- DDT as unusable (R)
- b. Qualify detects for 4,4'-DDD as tentatively identified (NJ)
- c. Qualify detects for 4,4'-DDE as tentatively identified (NJ)

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is detected?

Yes? or No?

Action

- a. Qualify detects for Endrin; detects for Endrin aldehyde; and detects for Endrin ketone as estimated (J)
- b. Non-detected associated compounds are not qualified

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is not detected

Yes? or No?

Action

- a. Qualify non-detects for Endrin as unusable (R)
- b. Qualify detects for Endrin aldehyde as tentatively identified (NJ)
- c. Qualify detects for Endrin ketone as tentatively identified (NJ)

A separate worksheet should be filled for each initial curve

All criteria were metX
Criteria were not met
and/or see below

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamir	nation in the bla	anks below. Hig	h and low levels blanks	must be treated separately.
CRQL concentra	ationN	/A		
Laboratory blank	KS .			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_ug/L				nit_of_0.01,_0.02,_and_0.25_
DATE Analyzed	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_field/trip/eq	uipment_blank	s_analyzed_wit	h_this_data_package	

All criteria were metX
Criteria were not met
and/or see below

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

The concentration of non-target compounds in all blanks must be less than or equal to 10 μ g/L. The concentration of each target compound found in the method or field blanks must be less than its CRQL listed in the method.

Data concerning the field blanks are not evaluated as part of the CCS process. If field blanks are present, the data reviewer should evaluate this data in a similar fashion as the method blanks.

Specific actions are as follows:

Blank Actions for Pesticide Analyses

Blank Type	Blank Result	Sample Result	Action for Samples
	Detects	Not detected	No qualification required
	< CRQL	< CRQL	Report CRQL value with a U
		≥CRQL	No qualification required
Method, Sulfur		< CRQL	Report CRQL value with a U
Cleanup, Instrument, Field, TCLP/SPLP	> CRQL	≥ CRQL and ≤ blank concentration	Report blank value for sample concentration with a U
		≥ CRQL and > blank concentration	No qualification required
	= CRQL	≤CRQL	Report CRQL value with a U
		> CRQL	No qualification required
	Gross contamination	Detects	Report blank value for sample concentration with a U

All criteria were metX
Criteria were not met
and/or see below

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
					-

All criteria were met _____ Criteria were not met and/or see below ___X__

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

Matrix:_Aqueo	us				
Lab	Lab				
Sample ID	File ID	S1 a	S1 b	S2 a	S2 b
JC28248-1	1G127937.D	84	71	46	34
JC28248-1	1G128042.D	75	75	53	53
JC28248-2	1G127938.D	81	68	43	33
JC28248-3	1G127939.D	102	86	54	44
JC28248-4	1G127940.D	121	73	54	33
JC28248-4	1G128043.D	87	68	74	60
JC28248-5	1G127941.D	118	73	35	21
JC28248-5	1G128044.D	85	68	67	59
JC28248-6	1G127942.D	87	82	54	48
JC28248-6	1G128045.D	62	64	51	52
JC28248-7	1G127943.D	86	82	80	72
JC28248-7	1G128046.D	72	74	67	68
OP97273-BS1	1G127916.D	62	54	68	57
OP97273-MB1	1G127915.D	64	58	53	45
OP97273-MS	1G127918.D	67	61	56	48
OP97273-MSD	1G127919.D	64	58	64	55
OP97553-BS1	1G128040.D	68	67	42	40
OP97553-BSD	1G128041.D	77	77	46	46
OP97553-MB1	1G128039.D	76	77	49	47

Surrogate Compounds	Recovery Limits
S1 = Tetrachloro-m-xylene	26-132%
S2 = Decachlorobiphenyl	10-118%

- (a) Recovery from GC signal #1
- (b) Recovery from GC signal #2
- (c) Outside the QC limits due matrix interference.
- (d) Outside the QC limits.

Note: Surrogate recoveries within laboratory control limits.

Actions:

- a. For any surrogate recovery greater than 150%, qualify detected target compounds as biased high (J+).
- b. Do not qualify non-detected target compounds for surrogate recovery > 150 %.
- c. If both surrogate recoveries are greater than or equal to 30% and less than or equal to 150%, no qualification of the data is necessary.
- d. For any surrogate recovery greater than or equal to 10% and less than 30%, qualify detected target compounds as biased low (J-).
- e. For any surrogate recovery greater than or equal to 10% and less than 30%, qualify non-detected target compounds as approximated (UJ).
- f. If low surrogate recoveries are from sample dilution, professional judgment should be used to determine if the resulting data should be qualified. If sample dilution is not a factor:
 - i. Qualify detected target compounds as biased low (J-).
 - ii. Qualify non-detected target compounds as unusable (R).
- g. If surrogate RTs in PEMs, Individual Standard Mixtures, samples, and blanks are outside of the RT Windows, the reviewer must use professional judgment to qualify data.
- h. If surrogate RTs are within RT windows, no qualification of the data is necessary.
- i. If the two surrogates were not added to all samples, MS/MSDs, standards, LCSs, and blanks, use professional judgment in qualifying data as missing surrogate analyte may not directly apply to target analytes.

Summary Surrogate Actions for Pesticide Analyses

	Action*				
Criteria	Detected Target Compounds	Non-detected Target Compounds			
%R > 150%	J+	No qualification			
30% < %R < 150%	No qualification				
10% < %R < 30%	J-	UJ			
%R < 10% (sample dilution not a factor)	J-	R			
%R < 10% (sample dilution is a factor)	Use profess	ional judgment			
RT out of RT window	Use professional judgment				
RT within RT window	No qualification				

 Use professional judgment in qualifying data, as surrogate recovery problems may not directly apply to target analytes.

All criteria were met
Criteria were not met
and/or see belowX

MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

MS/MSD Recoveries and Precision Criteria

Data for MS and MSDs will not be present unless requested by the Region.

Notify the Contract Laboratory Program Project Officer (CLP PO) if a field blank was used for the MS and MSD, unless designated as such by the Region.

NOTE: For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:JC28157-1MS/MSD					Matrix/	Level:	Groundwater			
The QC reported here applies to the following samples: JC28248-2, JC28248-3								Method	d: SW846 8081B	
	JC28157-1		Spike	MS	MS	Spike	MSD	MSD		Limits
Compound	ug/l	Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD
Aldrin	ND		0.25	0.083	33* b	0.25	0.10	40	19	37-159/40

⁽b) Outside the QC limits.

Note: MS/MSD sample analyzed with this data package. % recoveries and RPD within laboratory control limits except in the cases described in this document. No action taken, results apply to unspiked sample. Unspiked sample from another job.

Action

No qualification of the data is necessary on MS and MSD data alone. However, using professional judgment, the validator may use the MS and MSD results in conjunction with other QC criteria and determine the need for some qualification of the data.

A separate worksheet should be used for each MS/MSD pair.

^{* =} Outside of Control Limits.

All criteria were metX
Criteria were not met
and/or see below

LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

LCS Spike Compound	Recovery Limits (%)
gamma-BHC	50 – 120
Heptachlor epoxide	50 – 150
Dieldrin	30 – 130
4,4'-DDE	50 – 150
Endrin	50 – 120
Endosulfan sulfate	50 – 120
trans-Chlordane	30 – 130
Tetrachloro-m-xylene (surrogate)	30 – 150
Decachlorobiphenyl (surrogate)	30 – 150

LCS concentrations:0.25_ug/l;		
List the %R of compounds which do not meet the criteria		
LCS ID COMPOUND	% R	QC LIMIT
OP97273-BS1Aldrin	35_%	38138
Heptachlor	44_%	45137

Note: No action taken, professional judgment. Analytes not detected in sample batch.

Heptachlor reported from 1st signal. %D of check on 2nd signal exceeds method criterion (20%) so 2nd signal is used for confirmation only.

Action

The following guidance is suggested for qualifying sample data for which the associated LCS does not meet the required criteria.

- a. If the LCS recovery exceeds the upper acceptance limit, qualify detected target compounds as estimated (J). Do not qualify non-detected target compounds.
- b. If the LCS recovery is less than the lower acceptance limit, qualify detected target compounds as estimated (J) and non-detects as unusable (R).
- c. Use professional judgment to qualify data for compounds other than those compounds that are included in the LCS.

d. Use professional judgment to qualify non-LCS compounds. Take into account the compound class, compound recovery efficiency, analytical problems associated with each compound, and comparability in the performance of the LCS compound to the non-LCS compound.

e. If the LCS recovery is within allowable limits, no qualification of the data is necessary.

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

All criteria were met	
Criteria were not met	
and/or see belowN/A	

FLORISIL CARTRIDGE PERFORMANCE CHECK

NOTE: Florisil cartridge cleanup is mandatory for all extracts.

Criteria

Is the Florisil cartridge performance check conducted at least once on each lot of cartridges used for sample cleanup or every 6 months, whichever is most frequent?

Yes? or No?

Criteria

Are the results for the Florisil Cartridge Performance Check solution included with the data package?

Yes? or No?

Note: If % criteria are not met, examine the raw data for the presence of polar interferences and use professional judgment in qualifying the data as follows:

Action:

- a. If the Percent Recovery is greater than 120% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected compounds as estimated (J). Do not qualify non-detected target compounds.
- b. If the Percent Recovery is greater than or equal to 80% and less than or equal to 120% for all the pesticide target compounds, no qualification of the data is necessary.
- c. If the Percent Recovery is greater than or equal to 10% and less than 80% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected target compounds as estimated (JJ) and non-detected target compounds as approximated (UJ).
- d. If the Percent Recovery is less than 10% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected compounds as estimated (J) and qualify non-detected target compounds as unusable (R).
- e. If the Percent Recovery of 2,4,5-trichlorophenol in the Florisil Cartridge Performance Check is greater than or equal to 5%, use professional judgment to qualify detected and non-detected target compounds, considering interference on the sample chromatogram.

Note: State in the Data Review Narrative potential effects on the sample data resulting from the Florisil Cartridge Performance Check analysis not yielding acceptable results.

Note:_ No information for florisil cartridge performance check included in data package. There is evidence tahtFlorisil cartridge was used for sample extraction/clean-up. No qualification of the data performed, professional judgment.

All criteria were metN/A	
Criteria were not met	
and/or see below	

GEL PERMEATION CHROMATOGRAPHY (GPC) PERFORMANCE CHECK

NOTE: GPC cleanup is mandatory for all soil samples.

If GPC criteria are not met, examine the raw data for the presence of high molecular weight contaminants; examine subsequent sample data for unusual peaks; and use professional judgment in qualifying the data. Notify the Contract Laboratory Program Project Officer (CLP PO) if the laboratory chooses to analyze samples under unacceptable GPC criteria.

Action:

- a. If the Percent Recovery is less than 10% for the pesticide compounds and surrogates during the GPC calibration check, the non-detected target compounds may be suspect, qualify detected compounds as estimated (J).
- b. If the Percent Recovery is less than 10% for the pesticide compounds and surrogates during the GPC calibration check, qualify all non-detected target compounds as unusable (R).
- c. If the Percent Recovery is greater than or equal to 10% and is less than 80% for any of the pesticide target compounds in the GPC calibration, qualify detected target compounds as estimated (J) and non-detected target compounds as approximated (UJ).
- d. If the Percent Recovery is greater than or equal to 80% and less than or equal to 120% for all the pesticide target compounds, no qualification of the data is necessary.
- e. If high recoveries (i.e., greater than 120%) were obtained for the pesticides and surrogates during the GPC calibration check, qualify detected compounds as estimated (J). Do not qualify non-detected target compounds.

Note: State in the Data Review Narrative potential effects on the sample data resulting from the GPC cleanup analyses not yielding acceptable results.

Note: No information for performance of GPC cleanup included in data package. No qualification of the data performed, professional judgment.

All criteria were metX_	_
Criteria were not met	
and/or see below	

TARGET COMPOUND IDENTIFICATION

Criteria:

- 1. Is Retention Times (RTs) of both of the surrogates and reported target compounds in each sample within the calculated RT Windows on both columns?

 Yes? or No?
- 2. Is the Tetrachloro-m-xylene (TCX) RT ± 0.05 minutes of the Mean RT (RT) determined from the initial calibration and Decachlorobiphenyl (DCB) within ± 0.10 minutes of the RT determined from the initial calibration? Yes? or No?
- 3. Is the Percent Difference (%D) for the detected mean concentrations of a pesticide target compound between the two Gas Chromatograph (GC) columns within the inclusive range of \pm 25.0 Yes? or No?
- 4. When no analytes are identified in a sample; are the chromatograms from the analyses of the sample extract and the low-point standard of the initial calibration associated with those analyses on the same scaling factor?

 Yes? or No?
- 5. Does the chromatograms display the Single Component Pesticides (SCPs) detected in the sample and the largest peak of any multi-component analyte detected in the sample at less than full scale.

 Yes? or No?
- 6. If an extract is diluted; does the chromatogram display SCPs peaks between 10-100% of full scale, and multi-component analytes between 25-100% of full scale? Yes? or No?
- 7. For any sample; does the baseline of the chromatogram return to below 50% of full scale before the elution time of alpha-BHC, and also return to below 25% of full scale after the elution time of alpha-BHC and before the elution time of DCB?

 Yes? or No?
- 8. If a chromatogram is replotted electronically to meet these requirements; is the scaling factor used displayed on the chromatogram, and both the initial chromatogram and the replotted chromatogram submitted in the data package.

 Yes? or No?

Action:

- a. If the qualitative criteria for both columns were not met, all target compounds that are reported as detected should be considered non-detected.
- b. Use professional judgment to assign an appropriate quantitation limit using the following guidance:
 - i. If the detected target compound peak was sufficiently outside the pesticide RT Window, the reported values may be a false positive and should be replaced with the sample Contract Required Quantitation Limits (CRQL) value.

- ii. If the detected target compound peak poses an interference with potential detection of another target peak, the reported value should be considered and qualified as unusable (R).
- c. If the data reviewer identifies a peak in both GC column analyses that falls within the appropriate RT Windows, but was reported as a non-detect, the compound may be a false negative. Use professional judgment to decide if the compound should be included.

Note: State in the Data Review Narrative all conclusions made regarding target compound identification.

- d. If the Toxaphene peak RT windows determined from the calibration overlap with SCPs or chromatographic interferences, use professional judgment to qualify the data.
- e. If target compounds were detected on both GC columns, and the Percent Difference between the two results is greater than 25.0%, consider the potential for coelution and use professional judgment to decide whether a much larger concentration obtained on one column versus the other indicates the presence of an interfering compound. If an interfering compound is indicated, use professional judgment to determine how best to report, and if necessary, qualify the data according to these guidelines.
- f. If Toxaphene exhibits a marginal pattern-matching quality, use professional judgment to establish whether the differences are due to environmental "weathering" (i.e., degradation of the earlier eluting peaks relative to the later eluting peaks). If the presence of Toxaphene is strongly suggested, report results as presumptively present (N).

GAS CHROMATOGRAPH/MASS SPECTROMETER (GC/MS) CONFIRMATION

NOTE: This confirmation is not usually provided by the laboratory. In cases where it is provided, use professional judgment to determine if data qualified with "C" can be salvaged if it was previously qualified as unusable (R).

Action:

- a. If the quantitative criteria for both columns were met (≥ 5.0 ng/µL for SCPs and ≥ 125 ng/µL for Toxaphene), determine whether GC/MS confirmation was performed. If it was performed, qualify the data using the following guidance:
 - i. If GC/MS confirmation was not required because the quantitative criteria for both columns was not met, but it was still performed, use professional judgment when evaluating the data to decide whether the detect should be qualified with "C".
 - ii. If GC/MS confirmation was performed, but unsuccessful for a target compound detected by GC/ECD analysis, qualify those detects as "X".

All criteria were metX
Criteria were not met
and/or see below

RF = 0.916

COMPOUND QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

Action:

- a. If sample quantitation is different from the reported value, qualify result as unusable (R).
- b. When a sample is analyzed at more than one dilution, the lowest CRQLs are used unless a QC exceedance dictates the use of the higher CRQLs from the diluted sample.
- c. Replace concentrations that exceed the calibration range in the original analysis by crossing out the "E" and its corresponding value on the original reporting form and substituting the data from the diluted sample.
- d. Results between the MDL and CRQL should be qualified as estimated (J).
- e. Results less than the MDL should be reported at the CRQL and qualified (U). MDLs themselves are not reported.
- f. For non-aqueous samples, if the percent moisture is less than 70.0%, no qualification of the data is necessary. If the percent moisture is greater than or equal to 70.0% and less than 90.0%, qualify detects as estimated (J) and non-detects as approximated (UJ). If the percent moisture is greater than or equal to 90.0%, qualify detects as estimated (J) and non-detects as unusable (R) (see Table).

Percent Moisture Actions for Pesticide Analysis for Non-Aqueous Samples

Criteria	Action		
	Detected Associated Compounds	Non-detected Associated Compounds	
% Moisture < 70.0	No qualification		
70.0 < % Moisture < 90.0	J	UJ	
% Moisture > 90.0	J	R	

st samples w	nich have <u><</u> 50) % solids			
			 -		
			 	<u>.</u>	

lote: If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.

Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION		

All criteria were metN/A
Criteria were not met
and/or see below

FIELD DUPLICATE PRECISION

NOTE: In the absence of QAPP guidance for validating data from field duplicates, the following action will be taken.

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples. Identify which samples within the data package are field duplicates. Estimate the relative percent difference (RPD) between the values for each compound. If large RPDs (> 50%) is observed, confirm identification of samples and note difference in the executive summary.

Sample IDs:				Matrix:		
COMPOUND	SQL ug/L	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION	
No field/laborator	v dunlicate	analyzed with	this data package. MS	MSD % roc	Poweries PPD used to	
assess precision	. RPD with	nin the required	I criteria of < 50 % exce on taken based on RPI	ept in the ca	ses described in this	

Actions:

- a. Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.
- b. If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:
 - i. If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).
 - ii. If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.
 - iii. If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.
 - iv. If both sample and duplicate results are not detected, no action is needed.

OVERALL ASSESSMENT OF DATA

Action:

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.
- 2. Write a brief narrative to give the user an indication of the analytical limitations of the data.

Note: The Contract Laboratory Program Project Officer (CLP PO) must be informed if any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).

Overall assessment of the data:

Results are valid; the data can be used for decision making purposes.